

Marketing Education in the Age of Generative AI: Preparing Graduates for Human–AI Collaboration

A White Paper for Marketing Educators, Programme Leaders, and Professional Bodies

Chahna Gonsalves

Senior Lecturer in Marketing (Education), King's College London
Chair, Academy of Marketing Marketing Education SIG

*on behalf of the Academy of Marketing Marketing Education SIG
Development Team and Contributors*

About this White Paper

This white paper was developed by the **Academy of Marketing Marketing Education Special Interest Group** to provide strategic guidance for educators navigating the integration of Generative AI in marketing curricula. It reflects survey findings, expert contributions, and collaborative review from members of the AM Marketing Education SIG.

The views expressed in this report are those of the authors and do not necessarily represent the views of the Academy of Marketing.

Generative AI supported the synthesis and editing of contributor materials. The authors retain full responsibility for all content and interpretations.

Development Team

We thank all team members and contributors for their expertise.

Michelle Clancy, Lecturer and Postdoctoral Research Fellow, South East Technological University (Ireland).

Rushana Khusainova, Senior Lecturer in Marketing and Education Lead, University of Bristol Business School.

Hsin-Hsuan Meg Lee, Associate Professor in Marketing, ESCP Business School.

Kristen Marshall, Assistant Professor in Digital Marketing, Heriot-Watt University (Scotland).

Sarah Percy, Assistant Professor in Marketing, University of Birmingham (Dubai).

La Toya Quamina, Senior Lecturer in Marketing, University of Westminster.

Sunčica Vuković, Lecturer, University of Montenegro, Faculty of Economics.

Ana Isabel Canhoto, Professor of Digital Business, University of Sussex Business School.

Paul Baines, Professor of Political Marketing and Head of Executive Education, University of Leicester.

Supporting Contributors

Sanja Gardašević Janion, MSc, CEO, Alicorn Digital Agency.

Nemanja Đurašković, MSc, Director of Marketing, Communications & CRM
Crnogorska komercijalna banka a.d. Podgorica.

Luan Wise, PhD Candidate, University of Lancashire; Marketing Practitioner.

Version Note

This white paper reflects the state of evidence, practice, and policy as of December 2025.

Executive Summary

Generative Artificial Intelligence (GenAI) is now a permanent feature of marketing education and industry practice. As students increasingly use AI for ideation, analysis, and content creation, the key question has shifted from whether AI should be used to how it can be used critically, ethically, and with professional judgement. Drawing on survey evidence from 89 marketing educators and contemporary scholarship, this white paper examines AI's implications for curriculum, pedagogy, assessment, employability, and institutional governance. Across all evidence, a clear message emerges: future marketing work is hybrid, and graduates must be prepared to operate in human–AI environments where value comes from interpretation, verification, and justification—not faster output.

Educators recognise benefits including accelerated creativity, rapid feedback, and enhanced simulation. They also identify risks: diminished critical thinking, over-reliance on automation, inequitable access, and inconsistent institutional expectations. Addressing these challenges requires intentional educational design grounded in transparency, accountability, and human-led reasoning. Six strategic priorities guide this work.

1. Align curriculum with human-in-the-loop practice.

AI literacy and ethical reasoning should be embedded across core modules. Prompting must be taught as a strategic communication skill rooted in brand voice, audience understanding, and cultural nuance. Studio-style and iterative tasks—where students critique, adapt, and justify AI outputs—help preserve the interpretive, reflective, and strategic foundations of marketing learning.

2. Redesign assessment around reasoning and accountability.

Assessment must focus on decision-making rather than polished artefacts. AI-use disclosures, prompt and version logs, verification notes, and oral defences make reasoning visible. AI-inclusive marking criteria should evaluate critical reflection, ethics, verification practice, and justification. These structures enhance integrity and align with professional expectations for accountable AI use.

3. Build staff capability in judgement-led pedagogy.

Educators do not need technical expertise but require confidence in facilitating

critique, ethical deliberation, and inquiry. Professional development should target judgement, bias awareness, and responsible data practice—not tool demos. Peer exchange and team-teaching support consistent programme cultures.

4. Ensure equitable and inclusive access.

Without coordinated provision, AI risks widening attainment gaps. Institutions should supply approved tools or design activities around accessible models. AI literacy must begin at induction, supported by academic skills programmes. Universal Design for Learning principles should guide AI-enabled support for multilingual, disabled, and neurodiverse learners.

5. Align institutional policy with educational design.

Policies should provide clear operational expectations within module documents and assessment templates. Institutions must standardise AI guidance, integrate emerging regulatory frameworks, and ensure consistency across teaching, research, and partnerships.

6. Strengthen industry collaboration.

Employability now depends on demonstrating responsible human–AI collaboration. Institutions should work with industry partners to adopt privacy-safe, AI-enabled workflows for teaching and live projects, including the use of synthetic datasets and version-control practices. Practitioner involvement in critique and defence processes enhances professional authenticity.

GenAI does not diminish the purpose of marketing education; it amplifies the importance of human judgement, contextual intelligence, and ethical responsibility. The future of marketing education must be human-led, AI-informed, and accountability-centred.

Contents

Executive Summary	4
Introduction	8
About the Survey	11
Literature Review	12
AI's Impact on the Curriculum	19
Where Change Is Concentrated	19
Applied Marketing Scenarios: Evaluating AI-Generated Outputs	20
New Competencies for Students	33
AI's Impact on Pedagogy	39
What Is Shifting—And Why It Matters	39
Educator Adoption, Confidence, and Ethical Concerns	49
Actionable Guidance	51
AI's Impact on Assessment	54
How Assessment Is Shifting—and Why Validity Now Depends on Visible Reasoning	54
Purpose First: Re-Establish Assessment Validity	55
What To Assess—and How	56
Infrastructure Shapes Assessment	59
AI's Impact on Employability	63
Why Employability Needs Reframing	63
AI's Institutional Policy, Governance and Readiness	74
Current State of Institutional Policy	75
Staff Capability and Professional Development	80
What Institutions Need to Do Now	82
AI's Impact on Equity, Inclusion, and Access	86

Opportunities: AI as an Enabler of Inclusive, Applied, and Accessible Learning	86
Recommendations & Strategic Priorities	91
References	94
Key Terms and Abbreviations	100
Appendix A — Survey Respondent Profile	101

Introduction

Marketing education is entering a period of structural transition. Generative Artificial Intelligence (GenAI) is no longer a future possibility to prepare for; it is already reshaping how students generate ideas, seek information, collaborate, and form professional identities. The context in which learning takes place has changed. AI-enabled tools now underpin everyday study practices, workplace expectations, and the wider marketing ecosystem. The key question for educators is therefore not whether AI should be included, but how. More specifically: how should marketing education respond—and with what principles, priorities, and pedagogic intent?

This white paper is written for marketing educators, curriculum and programme leads, educational developers, careers teams, industry partners, and professional bodies concerned with the future of marketing education. It does not provide platform tutorials or endorse specific tools. Instead, it offers strategic and pedagogical guidance to help educators design learning environments in which AI use strengthens disciplinary understanding and professional capability.

Although this report focuses specifically on GenAI, it sits within the much broader landscape of artificial intelligence in education. AI as a field is longstanding and multifaceted, encompassing areas such as prediction, optimisation, natural language processing, and learning analytics. GenAI represents only one subset of this wider ecosystem—albeit a rapidly advancing and especially visible one. Discussions of other AI forms are therefore acknowledged but remain outside the scope of this paper. This delimitation is intentional: our aim is to examine how generative models are transforming marketing learning and practice, without attempting to address the full complexity of AI in education or the technicalities of machine learning.

A second boundary relates to marketing scholarship. This white paper does not address the implications of GenAI for academic research in marketing—an area with its own methodological, epistemic, and ethical questions. That field warrants dedicated treatment. Here, our focus is squarely on teaching, learning, curriculum design, assessment, employability, and the educational conditions under which GenAI can strengthen rather than erode disciplinary formation.

This paper takes the position that GenAI is now a normal condition of both learning and marketing practice. AI is already woven into tools for writing, research, analytics, ideation, design, content creation, and customer interaction. It therefore requires integration as a core dimension of discipline development, curriculum design, assessment practice, and professional identity formation. The central challenge is educational. AI capabilities are evolving faster than policy frameworks, staff development structures, and institutional norms. Without shared guidance, responses risk becoming uneven, reactive, or misaligned with the purposes of higher education.

At its foundation, marketing education has always aimed to build understanding of people, purpose, value, cultural meaning, and strategic communication. These disciplinary anchors remain stable. What is changing is how students demonstrate their grasp of these concepts. GenAI can now generate text, images, strategic outlines, and simulated customer behaviour. This shifts the educational emphasis toward how students interpret, critique, justify, and adapt AI-generated material with awareness of context, audience, brand, and ethics. The distinctive human contribution is increasingly located in judgement rather than production alone.

Educators play a crucial role in guiding students to work with AI in ways that deepen understanding rather than bypass it. Learning environments should encourage analysis, comparison, evidence-checking, and reasoned decision-making. Classroom dialogue becomes a space for asking: Why this output? What assumptions underpin it? What alternatives exist? What are the ethical, cultural, or strategic implications? The educator's role becomes less about providing information and more about designing opportunities for inquiry, critique, and reflective practice.

Assessment design is central to this shift. Product-focused tasks risk obscuring the reasoning processes behind AI-supported work. Approaches that make thinking visible—such as rationale notes, prompt logs, oral defences, iterative critique, and reflective commentaries—offer clearer insight into how students evaluate and justify decisions. These practices also align with evolving professional expectations, where transparency, critical reasoning, and ethical accountability now form key components of marketing competence.

GenAI also shapes employability. Marketing graduates are now expected to understand when AI should be used, how to evaluate its outputs, and how to ensure alignment with brand, audience, and organisational values. The future professional is less a producer of isolated assets and more a strategic orchestrator—someone who can blend AI capabilities with human insight, creativity, ethical awareness, and contextual intelligence.

This white paper positions itself as a forward-looking contribution to sector dialogue. It does not claim to have resolved the questions GenAI raises. Instead, it offers a foundation for ongoing discussion, development, and research—clarifying emerging patterns, articulating shared principles, and identifying educational priorities that require collective attention. Its purpose is to help the sector think together, not to prescribe a single model of practice.

We assume that readers bring two forms of baseline knowledge: a working understanding of marketing's disciplinary content and a general familiarity with GenAI as it is currently used in higher education and industry. The discussions that follow build on this shared foundation, exploring how GenAI interacts with existing pedagogic and disciplinary structures rather than reintroducing basic concepts.

To support educators in responding constructively to these shifts, this white paper examines five interconnected dimensions:

1. Curriculum—how disciplinary knowledge and capability requirements are evolving.
2. Pedagogy—how learning experiences can cultivate inquiry, critique, and reflective judgement.
3. Assessment—how process transparency, justification, and professional integrity can be foregrounded.
4. Employability—how graduate skills can align with industry expectations for human-AI collaboration.
5. Ethics and Inclusion—how to ensure AI-supported learning remains fair, accessible, and culturally aware.

Together, these dimensions offer a coherent framework for future-focused curriculum and programme design.

The future of marketing education will be shaped by how effectively we teach students to question, interpret, and direct AI systems with skill and responsibility. We invite educators and institutions to approach this task with clarity, shared purpose, and confidence in the enduring human dimensions of marketing. The analysis that follows draws on a review of current literature, the perspectives of the development team, and a sector-wide survey of 89 marketing educators—summarised below and referenced throughout the paper.

About the Survey

Purpose. To examine how marketing educators are engaging with GenAI and how this is shaping curriculum, pedagogy, and assessment.

Design. Online survey administered between September and October 2025.

Sample. n = 89 marketing educators, predominantly UK-based, teaching across undergraduate and postgraduate programmes. The evidence base for executive provision did not permit sector-level conclusions.

Measures. Adoption, institutional readiness, curriculum/assessment practice; closed-item descriptive analysis and thematic coding of open responses.

Use in this paper. Findings inform the Curriculum–Pedagogy–Assessment–Employability–Ethics framework and recommendations.

Limitations. Convenience sample; differences in institutional support, funding, and access to approved AI tools likely shape perspectives. Patterns should be read as indicative rather than sector-wide prevalence.

Literature Review

1. Generative AI's acceleration (2022–2025)

In little more than three years, GenAI has reshaped the landscape of higher education with unprecedented speed. Since the public release of ChatGPT in late 2022, tools capable of generating ideas, images, text, and analysis have moved from experimental novelties to routine features of student (HEPI, 2025) and staff workflows (Digital Education Council, 2025). Marketing education has been at the forefront of this shift: across the literature, authors now describe a rapid evolution from informal experimentation to structured, course-level integration and deliberate pedagogic redesign.

Scholars describe a 'paradigmatic' rethinking of creativity, authorship, and pedagogy within the field (Schlegelmilch & Mills, 2025), while companion contributions outline how to integrate GenAI in ways that realize benefits without ignoring risks (Guha et al., 2024; Mehmet et al., 2025). Early 2023 work framed large language models (LLMs) as promising productivity and learning aids, cataloguing opportunities (e.g., brainstorming, formative feedback) alongside limitations such as hallucination and bias (Kasneci et al., 2023). By 2024–2025, case-based accounts described planned course-level integrations in digital and marketing principles classes, with students required to use ChatGPT and image generators to produce creative artefacts under instructor-defined constraints (Beninger et al., 2025; Ding et al., 2024).

Across these implementations, a practical debate emerges:

1. productivity versus authenticity—LLMs can scaffold ideation and learning but may tempt over-reliance
2. epistemic authority—the educator role expands from content expert to facilitator of judgement, verification, and ethical reasoning; and
3. AI as collaborator—when deliberately framed, GenAI can provide iterative feedback and model reasoning (Kasneci et al., 2023; Narang et al., 2025; Richter et al., 2025).

Two implications follow. First, multiple studies document students using GenAI to brainstorm, draft, and refine ideas, especially in early phases of creative and analytic work (Ding et al., 2024; Morgan et al., 2024). Second, authors emphasize that the pedagogical challenge is not encouraging tool proficiency alone but designing tasks that require students to critique, reflect, and make ethical decisions around AI outputs (Guha et al., 2024; Richter et al., 2025). These concerns shape the system-level, pedagogical, assessment, and inclusion-oriented responses outlined in Sections 2–5, each of which addresses how programmes can embed these higher-order capabilities rather than rely on tool use alone.

2. System-level responses: curriculum, assessment, support

Several sources note shifts in curriculum design and assessment. One line of work argues that institutions should move beyond purely discursive rules about permissible AI use toward structural redesign of assessments that build validity “into assessment architecture rather than attempting to impose it through unenforceable rules” (Corbin, Dawson, et al., 2025, p. 1). In their words, effective responses must reshape the underlying mechanics of assessment tasks themselves, not just state policies students “remain free to ignore” (Corbin, Dawson, et al., 2025, p. 1). A subsequent analysis frames AI-and-assessment as a ‘wicked problem’ that resists definitive solutions and requires iterative, context-sensitive approaches, while noting student concerns about being falsely accused under detection-led regimes (Corbin, Bearman, et al., 2025).

Global guidance is coalescing around capability building. UNESCO released the first global AI competency frameworks for students (2024a) and teachers (2024b), each explicitly ‘human-centred’ and organized by named dimensions and progression levels. For teachers, fifteen competencies span five dimensions—human-centred mindset, ethics, AI foundations, AI pedagogy, and professional learning—across progressive mastery levels (‘Acquire,’ ‘Deepen,’ ‘Create’). The student framework mirrors this structure through twelve competencies across four domains: human-centred mindset, ethics, AI techniques, and system design. Both insist that education should strengthen human agency and moral discernment rather than substitute them. The UNESCO (2025) synthesis extends the discussion to higher education (HE) strategy, arguing for HE-specific competency frameworks and mapping current institutional initiatives; it links competencies to workforce

readiness and emerging policy without claiming established accreditation mandates.

Within the UK, the QAA's (2024) Quality Compass highlights GenAI's potential to democratise and personalise learning (e.g., accessibility through captioning or 'getting started' support), while cautioning about accuracy, equity, and digital poverty, it also invites enabling approaches to governance that balance opportunity and risk.

3. Pedagogical paradigms: from threat to partner

Empirical classroom accounts indicate that students frequently use GenAI to offload early-stage cognitive tasks such as brainstorming, summarising, or producing initial drafts. Instructors respond by designing structured checkpoints that require students to interpret, refine, and justify AI-influenced outputs, making reasoning visible rather than hidden (Ding et al., 2024; Morgan et al., 2024). This pattern aligns with established research on cognitive offloading, where learners shift cognitive effort to external systems to manage complexity or reduce workload (Risko & Gilbert, 2016). However, uncritical reliance can lead to epistemic passivity, where plausible AI-generated explanations displace deeper understanding (Holmes, 2024). Authors therefore emphasise practices that foreground source evaluation, justification, and bias awareness (Guha et al., 2024).

When positioned as a prompt for inquiry rather than a source of answers, offloading can become metacognitive: students externalise intermediate reasoning and then evaluate how knowledge is constructed, contested, and contextualised (Ding et al., 2024; Gonsalves, 2024). This pedagogical orientation reshapes educator identity. Instructor authority shifts from being the primary source of knowledge to facilitating students' capacity to critique, triangulate, and ethically position knowledge (Guha et al., 2024; Schlegelmilch & Mills, 2025). In this role, educators model how to interrogate AI outputs, frame uncertainty, and guide ethical judgement (Richter et al., 2025; Schlegelmilch & Mills, 2025).

A persistent risk is the erosion of productive struggle—the reflective effort required for conceptual growth (Hutson, 2025). If GenAI removes too much friction, students may miss opportunities to grapple with ambiguity and complexity. Course designs

therefore reintroduce structured challenge by asking students to *argue with AI*, critique its reasoning, and defend their own interpretive choices (Richter et al., 2025). In marketing education specifically, this has led to critical co-creation models, where students and AI iteratively ideate and refine work within ethical and contextual constraints (Mehmet et al., 2025; Richter et al., 2025). This approach aligns with constructivist and experiential learning traditions (Richter et al., 2025; Hutson, 2025), and is shown to support confidence, creativity, and ethical awareness (Richter et al., 2025; Morgan et al., 2024). The guiding principle is that GenAI functions as an epistemic partner, while human judgement remains the locus of meaning-making (Gonsalves, 2024).

4. Marketing education: practice change and competencies

4a. Automation and work design

Commentaries and reviews describe growing automation across marketing activities (e.g., content generation, personalisation, analytics) and workflows (Dwivedi et al., 2023; Grewal et al., 2024) and anticipate that professionals will need fluency in directing and evaluating AI systems (Kshetri et al., 2024; Mehmet et al., 2025). Broader marketing-AI frameworks outline how 'thinking,' 'feeling,' and 'acting' functionalities reallocate tasks between humans and machines, offering a strategic lens for curricula (Huang & Rust, 2021). Scholars caution that creative de-skilling is a risk if judgement and reflection are not developed alongside tool use and if GenAI is not paired with clear human oversight and pedagogical structure (Acar, 2024).

4b. Core competencies redefined

Foundational marketing capabilities—such as consumer insight, strategic analysis, branding, communication, and data interpretation—continue to be central to professional formation (Grewal et al., 2025; Mehmet et al., 2025). However, the increasing use of generative and predictive AI across ideation, segmentation, creative development, and analytics means that competence now includes the ability to *direct, critique, and justify* algorithmic contributions rather than produce all artefacts fully unaided (Grewal et al., 2025; Schlegelmilch & Mills, 2025). Analytical proficiency can no longer be understood as simply knowing the methods; it

requires knowing how to question, direct, and critique the methods that AI deploys on our behalf (Gonsalves, 2024; Stark & Vanden Broeck, 2024).

Emerging competency models converge on four interrelated areas:

- Ethical reasoning – evaluating risks related to bias, data provenance, transparency, and equitable access to AI-enabled tools (Mehmet et al., 2025).
- Human-AI collaboration – coordinating judgement, strategy, and computational processing, consistent with the positioning of GenAI as *tutor*, *teammate*, and *tool*, each implying distinct pedagogical intentions (Narang et al., 2025).
- Reflective transparency – making reasoning and prompting visible so that students can explain, justify, and revise their use of AI within task contexts (Richter et al., 2025).
- Melioration-selecting, integrating, and applying the right combination of information and tools to address complex tasks (Passig, 2003, 2007). In GenAI-enabled marketing education, this means refining *how* AI is used and improving *what* it produces by (1) adjusting prompts, parameters, and workflows to shape the model's reasoning, and (2) strengthening outputs through verification, authoritative evidence, and audience/brand alignment (Gonsalves, 2024).

In this framing, criticality operates at two levels. First, criticality toward the AI involves interrogating reasoning patterns, detecting bias, and understanding model limitations (Gonsalves, 2024; Kim & Koo, 2024). Second, criticality within the marketing task concerns applying and triangulating AI-generated material to real briefs and contextual evidence so that outputs become situated, defensible, and appropriately adapted (Mehmet et al., 2025; Richter et al., 2025). These competencies align with the UNESCO (2024a, 2024b) Teachers and Students AI Competency Frameworks, which emphasize human-centred judgement, ethical discernment, and reflective use, rather than substitution of professional expertise.

4c. Course and assessment design

Course-level implementations commonly use live briefs, iterative studio formats, and role-based integration in which students, instructors, and GenAI occupy distinct functions across stages of ideation, refinement, and evaluation (Ding et al., 2024; Mehmet et al., 2025). Scaffolded sequencing is recommended to preserve conceptual effort, with constraints gradually adjusted as students develop reflective control over AI use (Hutson, 2025). Moreover, comparative critique—such as evaluating human- versus AI-generated drafts—supports the development of judgement and brand-contextual reasoning (Morgan et al., 2024). Assessment practices increasingly emphasise process visibility through prompt logs, justification statements, reflective commentaries, and oral defences, aligning with calls to redesign assessment structurally rather than rely on detection (Corbin, Dawson, et al., 2025; Richter et al., 2025). Additionally, transparency in disclosing when and how AI is used becomes an assessed communicative practice in itself (Kim & Koo, 2024).

5. Academic integrity: from detection to design

Corbin et al.'s (2025) conceptualisation of AI-and-assessment as a *wicked problem* highlights that questions of authorship and verification cannot be resolved through prohibition or automated detection alone, with students and staff expressing concern about misattribution under detection-led regimes. In response, integrity practices are shifting toward designing transparency into the task itself—through oral defences, artefact trails, and iterative, situated assignments that make reasoning visible (Corbin, Dawson, et al., 2025). Under this approach, integrity is expressed through the student's capacity to account for their choices—how AI was used, why, and with what judgement—rather than through the monitoring of outputs alone. Sector guidance aligns with this trajectory, emphasising agency, disclosure, and trust over surveillance (QAA, 2024; UNESCO, 2024a, 2024b).

6. Ethics, inclusion, and support

Across the literature, ethical engagement is presented as an ongoing, situated practice rather than a checklist of risks. Authors emphasise the need to foreground questions of representation, authorship, consent, and data provenance within disciplinary problem-solving rather than isolate them as abstract warnings (Acar, 2024; Beninger et al., 2025). Equity concerns extend beyond access to tools toward

disparities in confidence, tacit norms of 'appropriate' AI use, and uneven institutional guidance (Guha et al., 2024; Mehmet et al., 2025). At the same time, intentional use can support multilingual and neurodiverse learners through scaffolding and translation (Kim & Koo, 2024). Frameworks recommend making these tensions explicit by integrating ethical reflection, disclosure practices, and differentiated support into course and assessment design (UNESCO, 2024a, 2024b). The overarching aim is the responsible use of AI in education.

7. Future trajectory

The literature anticipates AI literacy becoming a core marker of readiness for both students and educators. UNESCO's (2024a, 2024b) frameworks frame AI capability as a shared professional practice: students must develop ethical reasoning, system understanding, and critical oversight, while educators must design environments that cultivate these capacities and model reflective, transparent use (Guha et al., 2024; Mehmet et al., 2025). At the same time, marketing practice is shifting toward increasingly multimodal generative systems capable of producing text, imagery, audio, and interactive media in coordinated workflows (Ding et al., 2024; Huang & Rust, 2021). This suggests a curricular move from teaching isolated production techniques to teaching how to orchestrate coherent, context-sensitive brand expression across media environments with human judgement at the centre. The future value of marketing education will rest on its ability to cultivate discernment, contextual sensitivity, and ethical responsibility in AI-supported decision-making.

AI's Impact on the Curriculum

GenAI is reshaping what it means to learn marketing. The discipline's foundational domains—customer insight, segmentation and positioning, branding, value creation, and relationship management—remain central, but the centre of pedagogical gravity has shifted from producing outputs to evaluating, directing, and justifying them (Grewal et al., 2024; Mehmet et al., 2025). Students increasingly encounter GenAI as a co-creator of content, strategic scenarios, and interpretive frames, which requires educators to teach how to assess credibility, brand fit, cultural resonance, and ethical exposure, rather than simply how to generate more material.

Where Change Is Concentrated

Survey responses ($n = 89$) and recent classroom research identify the most substantial instructional shifts in marketing education. Figure 1 summarises the three curriculum areas respondents perceive as most disrupted by GenAI:

- Branding and communications, where GenAI produces text, imagery, and narrative variants at scale.
- Consumer insight and analytics, where the pedagogical emphasis moves from data handling to interpretation, triangulation, and evidential justification.
- Strategic decision-making, where students must compare and defend alternative futures generated with AI assistance.

For brand-facing roles in particular, AI no longer merely generates artefacts—it shapes persona, tone, sequencing, and cultural meaning. The emerging curricular task is therefore not producing more content but stewarding narrative coherence and ethical resonance across multimodal workflows (text, imagery, audio, motion, adaptive personalisation). Ethical literacy is widely recognised as essential but remains under-developed and inconsistently embedded across modules.

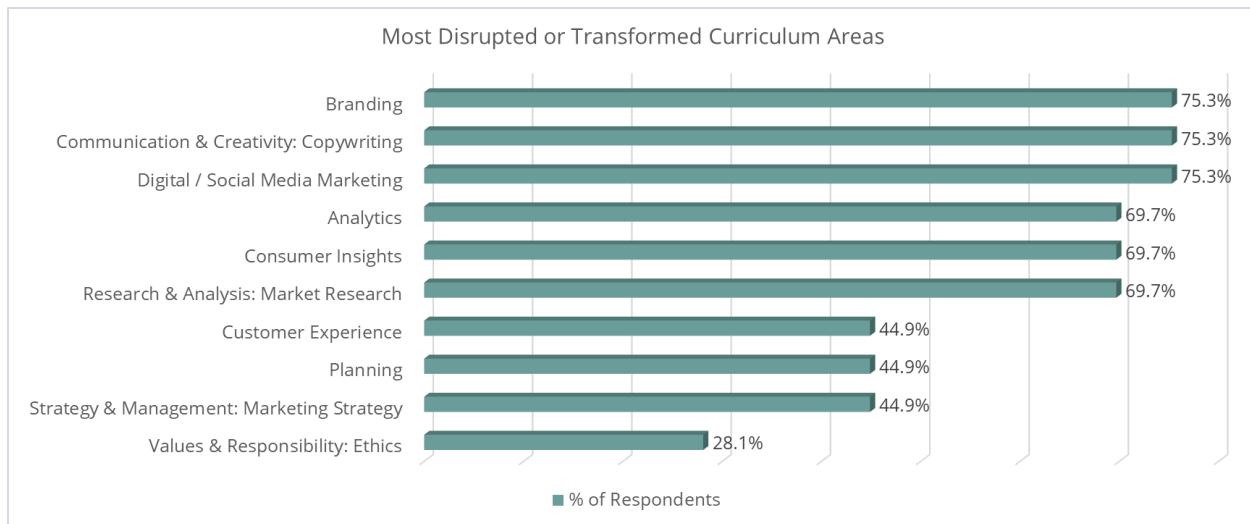


Figure 1. Most disrupted or transformed curriculum areas (n = 89)

Applied Marketing Scenarios: Evaluating AI-Generated Outputs

While these shifts can be described conceptually, their importance becomes clear when GenAI is applied to core marketing tasks. Across branding, insight generation, segmentation, and journey design, AI often produces polished but strategically flawed outputs. The following examples illustrate common breakdowns in coherence, cultural nuance, behavioural depth, and brand fit—reinforcing the need for curricula that emphasise evaluation, refinement, and professional judgement.

1. Brand tone drift in AI-generated copy

Scenario: A heritage luxury brand asks an AI tool to generate email copy for a seasonal promotion.

AI output: "Get ready for massive savings! Snag these deals before they vanish!"

Issue: AI defaults to an overly transactional, high-energy retail tone inconsistent with the brand's understated, aspirational voice.

Marketing-specific lesson: AI must be constrained with explicit tonal, stylistic, and audience cues to maintain brand equity.

2. Positioning statement: Before vs. after human refinement

AI-generated positioning: "For busy people who want convenience, FreshMeal is a great meal delivery service that offers quick meals."

Corrected by marketing educators: "For health-conscious urban professionals, FreshMeal delivers chef-designed, nutritionally balanced meals that fit effortlessly into high-performance lifestyles."

Marketing-specific lesson: AI tends to produce generic positioning; human expertise sharpens segmentation, value propositions, and differentiation.

3. Flawed AI-generated persona versus corrected persona

AI persona: "Emily, 32. Loves coffee, yoga, and shopping. Lives in a city. Wants convenience."

Issues: Stereotyped clichés, no behavioural insight, vague attributes.

Corrected persona: "Emily Chen, 32, London-based UX designer. Travels internationally for work. Prioritises sustainable brands and buys via mobile. Responds to peer reviews and micro-influencers. Avoids intrusive data collection."

Marketing-specific lesson: AI exaggerates superficial lifestyle markers; educators must teach depth, behaviour, and context.

4. AI-synthesised customer journey missing emotional stages

AI Journey: Awareness → Consideration → Purchase → Loyalty

Issues: No emotional state, no multi-channel touchpoints, no post-purchase friction.

Expanded journey:

- Awareness via TikTok micro-influencers
- Consideration triggered by peer recommendation
- Evaluation includes price comparison and ethical rating
- Purchase influenced by UX heuristics
- Post-purchase shareability and user-generated content
- Loyalty shaped by personalised offers and identity alignment

Marketing-specific lesson: AI oversimplifies; humans bring behavioural nuance and emotional drivers.

5. Stereotypical audience segmentation

AI output: "Segment 1: Students. Segment 2: Parents. Segment 3: Professionals."

Issues: Too broad, not behaviourally grounded, not usable.

Human-refined segmentation: "Time-scarce micro-taskers; subscription-averse value-maximisers; digital-native explorers; mid-career security seekers."

Marketing-specific lesson: AI needs strong prompting to avoid reductive, demographic-only segmentation.

6. AI-generated social posts ignoring cultural sensitivity

Scenario: AI generates a Diwali campaign for a global brand.

Issue: It misinterprets cultural symbols, uses stereotypical imagery, and misrepresents the festival as “India’s Christmas.”

Marketing-specific lesson: Cultural nuance, semiotics, and localisation require human review and contextual expertise.

7. Misaligned creative for a brand refresh

AI output: Logo redesign prototype features bright neon colours and playful typefaces.

Brand reality: A B2B cybersecurity company centred on trust, stability, and confidence.

Marketing-specific lesson: AI image generation defaults to visual trends and lacks contextual understanding of brand strategy.

8. AI produces dangerous “insights” from synthetic data

Scenario: Students prompt AI to “give me market research insights on Gen Z healthcare attitudes.”

Issue: AI fabricates insights presented with false confidence; no real dataset exists.

Marketing-specific lesson: Teaching verification, provenance, and methodological caution is essential when AI outputs appear authoritative.

9. AI Drafts an influencer strategy that violates FTC/ASA guidelines

AI Output: Recommends undisclosed influencer partnerships and high-risk “viral challenge” content.

Issue: Legal and ethical violations; no awareness of industry regulations.

Marketing-specific lesson: Marketing education must emphasise compliance, transparency, and reputation risk.

10. Sentiment analysis gone wrong

AI Tool Reports: “Sentiment: 80% positive.”

Human review shows: The AI misreads sarcasm, humour, and colloquial language on TikTok.

Marketing-specific lesson: Automated sentiment tools struggle with cultural nuance, platform-specific language, and multimodal content

What should lose emphasis—and what must be protected

Educators consistently distinguish between:

- Academic reasoning (conceptual argumentation, critique, synthesis), and
- Applied market reasoning (evidence-based insight, positioning, and interpretation).

Both are vulnerable to erosion if students outsource thinking or sense-making to AI. Figure 2 illustrates the areas most frequently identified as losing emphasis, reinforcing a sector-wide concern that uncritical automation threatens depth of learning. Curriculum design should therefore de-emphasise surface-level automation and protect the human work of interpretation, judgement, and justification.

Figure 2. Curriculum areas perceived as losing emphasis (n = 89)

Designing curriculum that cultivates judgement

The literature and survey findings converge on the need for curriculum formats that make students' reasoning visible and mirror professional workflow. Table 1 synthesises the most evidence-supported formats and clarifies the types of judgement each one develops

Table 1. Evidence-based curriculum formats that enable process-visible reasoning.

Curriculum format	What it enables	Supporting scholarship
Studio / iterative co-creation labs	Experimentation, critique, reflection, revision	(Mehmet et al., 2025; Richter et al., 2025)
'Compare-and-improve' tasks	Systematic critique and refinement of AI outputs	(Al-Fattal, 2025; Gonsalves, 2024)
Live briefs with AI-assisted deliverables	Authentic stakeholder reasoning and accountability	(Grewal et al., 2024; Narang et al., 2025)
Process-visible assessment (prompt logs, rationale statements)	Transparency as an integrity and evaluation norm	(Beninger et al., 2025; Corbin, Dawson, et al., 2025)

Curriculum format	What it enables	Supporting scholarship
Reflection-first sequences	Counters epistemic passivity	(Crittenden, 2024; Holmes, 2024)

These formats are included not as stylistic preferences but because they operationalise the central educational shift identified throughout the literature: from evaluating outputs to evaluating reasoning. Each model creates structured opportunities for students to externalise decision-making, interrogate AI contributions, and practise the interpretive judgement required in contemporary marketing work. In doing so, these formats build the capabilities that underpin the curriculum implications outlined in the next section.

Curriculum implications

1. Embed AI within core marketing modules, instead of isolating it into 'AI skills' add-ons.
2. Teach prompting as strategic brand communication, not as technical command syntax.
3. Assess verification, triangulation, and rationale—not just the polished outputs or 'final deliverables' that students submit.
4. Require process transparency: students should disclose how AI was used through prompt/version logs, short rationale statements, reflective justification, and—where appropriate—an oral defence of their decisions.

Marketing education should retain its disciplinary foundations, but the centre of learning now lies in judgement—directing, interrogating, and refining AI outputs in context. Effective programmes make students' reasoning visible and accountable, not hidden inside polished artefacts. The practices outlined below in Table 2 are already in use across UK and international marketing programmes and have demonstrated impact on the competencies outlined in the literature.

Table 2. Ready-to-adopt curriculum actions that make student reasoning visible and support competency-based assessment.

Action	Implementation example	Intended competency
AI-use disclosure + rationale	Short, standardised statement attached to all submissions	Ethical accountability; transparency
Prompt + version logs	Students submit prompt evolution and critique notes	Process visibility; iterative reasoning
AI-object critique	Evaluate AI personas/insights/creatives against brand and evidence	Evaluation; bias awareness; melioration
Oral defence	Viva/pitch on strategic choices and verification steps	Critical justification; professional communication
Verification checklist	Source provenance, bias scan, brand-safety, Intellectual Property (IP)/privacy note	Audit literacy; risk awareness

GenAI is not reshaping marketing education evenly. Its impact is concentrated in areas where interpretation, identity, and judgement matter most. Table 3 clarifies where the risks and opportunities are structurally different across subfields of marketing—an essential step in prioritising module redesign.

Table 3. Impact of GenAI on core areas of marketing education

Topic	How GenAI may change this area	Potential benefits for student learning	Potential drawbacks for student learning
AI governance & marketing ethics	Bias audits; transparency checklists; ethical risk mapping	Makes abstract ethics actionable; fosters accountability	Superficial ethics if treated as procedural rather than reflective
Business-to-Business (B2B) marketing & sales	Account intelligence summaries; buying-centre simulations; proposal and RFP drafting; ABM ideation	Supports understanding of complex buying processes; enables practice with long-cycle, multi-stakeholder decisions	Over-simplifies organisational politics; weakens negotiation and relationship-building skills if relied on too heavily
B2B analytics	Firmographic analysis; pipeline scoring; account prioritisation	Integrates analytics with strategic account management	Treats accounts as data points rather than relationships
Channels & distribution	Outlines channel models; simulates conflict	Clarifies complexity; supports partner planning	Oversimplifies operations and negotiation dynamics
Customer data management & privacy	Consent scenario simulation; data governance prompts; compliance summaries	Supports applied ethical reasoning; regulatory literacy	False sense of compliance mastery; neglect of legal nuance

Topic	How GenAI may change this area	Potential benefits for student learning	Potential drawbacks for student learning
Customer insight	Draft analysis from reviews/feedback; sentiment mining	Frees time for interpretation; strengthens data storytelling	Weakens research design skills if over-relied on; validation skipped
Digital & platform marketing	SEO/SEM optimisation; content calendars; platform-specific adaptation	Accelerates experimentation; improves platform literacy	Encourages tactical execution without strategic coherence
Entrepreneurial & startup marketing	Lean experiments; pitch drafting; early-market testing	Accelerates iteration; lowers cost of experimentation	Overconfidence; weak customer discovery discipline
Global & cross-cultural marketing	Cultural adaptation drafts; localisation tests; translation support	Expands exposure to global contexts; comparison across markets	Cultural flattening; reliance on stereotyped representations
Innovation & new product development (NPD)	Idea generation, concept testing, spec drafting	Expands divergent thinking; rapid concept iteration	Volume without diversity; confirmation bias; IP blind-spots
Integrated marketing communications (IMC)	Cross-channel alignment; narrative coherence checks	Reinforces strategic consistency across touchpoints	Formulaic messaging; reduced originality

Topic	How GenAI may change this area	Potential benefits for student learning	Potential drawbacks for student learning
Managing the customer experience	Simulates interactions and pain points	Enhances journey mapping and service design thinking	Lacks emotional reality; limits live interpersonal skills
Market segmentation & positioning	Suggests segments, personas, value propositions	Faster ideation and targeting logic tests	Stereotyped segments; weak original positioning if unchallenged
Marketing analytics & data science	Automated data cleaning; descriptive and predictive modelling; dashboard generation; insight narration	Lowers barriers to advanced analytics; shifts focus to interpretation, assumptions, and managerial implications	Risk of “black-box” reasoning; reduced statistical literacy and model validation skills
Marketing communications	Rapid copy and asset generation; A/B variants	Efficiency; personalisation; testing literacy	Originality concerns; neglect of persuasive writing and authorship ethics
Marketing environment & strategy	Summarises trends; drafts SWOT/PESTLE; scenario ideation	Builds adaptability; accelerates scenario testing	Generic strategies; inadequate feasibility checks

Topic	How GenAI may change this area	Potential benefits for student learning	Potential drawbacks for student learning
Marketing principles	On-demand explanations, live examples, case prompts	Bridges theory to current practice; supports iterative learning	Shallow understanding if students accept outputs without verification
Marketing research design	Survey drafting; interview guides; coding assistance	Frees time for interpretation; improves methodological exposure	Weakens epistemic reasoning if design logic is not interrogated
Marketing technology & operations (MarTech)	Tool selection advice; workflow automation; campaign orchestration	Builds systems thinking; exposes students to real-world stacks	Tool dependency; weak understanding of process design and integration
Marketing, society, sustainability & ethics	Scenario generation, stakeholder perspectives, data-ethics cases	Stimulates ethical reflection; supports multi-actor debate	Can oversimplify dilemmas or reproduce bias; risk of 'value-neutral' outputs
Predictive modelling & forecasting	Demand forecasts; churn prediction; scenario simulation	Builds intuition for uncertainty and probability-based decision-making	Overconfidence in model outputs; limited understanding of error, bias, and model drift
Pricing & value creation	Models scenarios; ties value narratives to sensitivity	Encourages experimentation; links price-value logic	Over-reliance may weaken financial reasoning without fundamentals

Topic	How GenAI may change this area	Potential benefits for student learning	Potential drawbacks for student learning
Proposition & branding decisions	Drafts taglines, narratives, identity cues	Compares multiple concepts; sharpens brand fit judgements	Generic/inconsistent branding; reduced creative ownership
Public relations & reputation management	Crisis simulation; stakeholder response drafting	Safe environment for high-risk scenario practice	Inadequate emotional realism; reputational stakes underplayed
Retail & shopper marketing	Planogram ideation; in-store messaging; omnichannel simulations	Connects analytics to physical environments	Over-simplifies operational constraints
Sales & customer relationship management (CRM)	Drafts outreach, sequences, and retention plays	Practice human-in-the-loop personalisation; Lifetime value (LTV) thinking	Over-templating; diminished relational skill if not balanced
Services marketing	Generates service blueprints, complaint scripts	Reinforces consistency; supports design-thinking practice	Over-scripting; generic dialogues; reduced empathy practice
Understanding customer behaviour	Simulated personas, journey mapping, message framing tests	Safe space for hypothesis testing and role-play	Risk of stereotyped personas; false sense of behavioural certainty

New Competencies for Students

GenAI is reshaping what marketing graduates are expected to do. It does not replace disciplinary knowledge; it changes how that knowledge is enacted in practice.

AI-Enabled Marketing Workflows

As GenAI moves from one-off prompting to integrated, multimodal pipelines, the nature of marketing work is shifting. AI no longer operates as a stand-alone tool used for isolated tasks; it now underpins AI-assisted workflows—coordinated sequences of text, image, audio, analytics, and optimisation processes that interact with each other across the lifecycle of a campaign. In these workflows, AI generates options, surfaces patterns, and proposes actions, while humans direct strategy, interpret meaning, and ensure brand and ethical alignment.

As these systems become more embedded, the centre of professional capability moves from producing artefacts to coordinating, evaluating, and justifying AI-assisted decisions. Programmes should therefore train students not only to operate these workflows but to critically audit them—understanding where AI adds value, where it introduces risk, and when human judgement must override automated suggestions. These capabilities involve concrete, real-world decisions—for example, checking synthetic personas against real audience data, rejecting implausible insights, editing AI-generated assets to correct tone or stereotype risk, and overriding optimisation suggestions that conflict with brand strategy or ethical expectations.

AI-assisted workflows increasingly operate as dynamic systems, where model outputs at one stage shape the direction and constraints of the next—creating cascading effects that marketers must be able to trace, question, and redirect. They also introduce new layers of orchestration work, as practitioners must balance algorithmic optimisation with narrative coherence, cultural intelligence, and long-term brand positioning rather than simply accepting the most efficient or highest-scoring automated option.

These workflows are outlined in Table 4, which specifies what AI automates and what students must learn to judge, refine, or override.

Table 4. Core AI-enabled workflows in contemporary marketing practice

Workflow	What AI Does	What Students Must Learn to Do
AI-Assisted Insight Labs (synthetic personas, scenario simulation, audience testing)	Generate hypotheses, personas, cluster segments, and behavioural predictions	Evaluate plausibility, triangulate with real data, identify gaps, test assumptions, refine insight
Creative Versioning & Brand Expression (text-image-audio co-creation)	Produce multiple variants aligned to tone, persona, and channel	Maintain brand coherence, identify misalignment or stereotype risk, refine narrative for cultural and ethical resonance
Campaign Orchestration Across Channels (integrated messaging workflows)	Automate sequencing, channel optimisation, and A/B iteration	Justify choices, interpret performance signals, balance automation with strategic intent
Automated Performance Feedback & Iteration Loops	Surface optimisation suggestions and efficiency metrics	Decide what to accept, reject, adapt — articulating <i>why</i> in relation to brand, audience, and ethics

Employers now expect graduates to work with AI as analytical, creative, and strategic collaborators, exercising judgement, ethical reasoning, and interpretation (Microsoft and LinkedIn, 2024). The question is no longer *if* AI will reshape roles, but whether students are prepared to engage it responsibly.

Beyond Technical Skill

Prompt engineering is widely described as an essential competency for marketers (Torkestani et al., 2025), but on its own it does not equip students to interpret AI-outputs in context, evaluate credibility and bias, justify AI-supported decisions, and act ethically amid uncertainty. This marks a shift from basic digital literacy to

integrated AI literacy that couples technical awareness with contextual reasoning and reflective practice.

The Competency Gap

Our survey and industry insight findings indicate a widening gap between curriculum delivery and industry expectations. Many students can produce content with AI but struggle to explain *why* an output is plausible, *what* evidence or nuance is missing, or *when* human judgement should override automation. This is a judgement gap. Closing it requires learning environments where process, critique, and ethical deliberation are made visible, not concealed behind polished outputs.

Operational Competencies Aligned to the Knowing-Doing-Being Framework

Following Barnett and Coate's (2005) Knowing-Doing-Being framework, ethical orientation ('Being') underpins how knowledge is interpreted and applied in practice (Khusainova et al., 2024). Figure 3 presents the conceptual structure—Knowing, Doing, and Being—while Table 5 translates this into six concrete competencies that operationalise these three dimensions for marketing practice.

Figure 3. GenAI skills for marketing, based on Barnett and Coate's (2005) educational model of Knowing, Acting (or Doing) and Being

Table 5. Operationalisation of the Knowing–Doing–Being framework into six competencies for GenAI-enabled marketing practice

Domain	Competency	What Students Must Be Able to Do	Disciplinary Rationale
BEING (Ethical orientation and professional identity)	1. AI Ethics and Accountability	Recognise bias, assess data provenance, evaluate representational risks, and justify decisions	Protects professional integrity and brand trust
KNOWING (Understanding systems, reasoning, evidence)	2. AI Literacy (Awareness + Application)	Understand what GenAI is doing, how it generates outputs, and where it fails	Supports appropriate task selection and human oversight
	3. Critical and Comparative Reasoning	Interrogate AI outputs, compare alternatives, and refine ideas through evidence	Preserves depth of learning and avoids epistemic passivity
DOING (Applied professional capability)	4. Strategic Prompting / Question Design	Construct prompts that encode audience, tone, value proposition, creative intent	Aligns AI use with core marketing strategy and brand identity
	5. AI-Augmented Content Creation	Co-create creative assets while maintaining originality, coherence, and ethical authorship	Prevents generic outputs and supports brand voice development

Domain	Competency	What Students Must Be Able to Do	Disciplinary Rationale
	6. AI-Enhanced Market & Data Analysis	Interpret large-scale patterns while validating limitations and identifying missing insight	Strengthens insight, storytelling and strategic decision-making

How These Competencies Are Built

Competencies develop through experiential and authentic learning environments where students work with AI across varied contexts, document and justify their decisions, and reflect on constraints, consequences, and ethical trade-offs. This aligns with and reinforces the process-visible assessment practices already outlined in Table 2 (AI-use rationale; prompt logs; critique; oral defence) and the studio and iterative learning formats summarised in Table 1.

Recommended practices:

- Use prompt logs and revision trails to make reasoning visible.
- Include ethical reflection prompts in both formative and summative assessment.
- Treat GenAI as a co-creator—not a shortcut.
- Provide structured frameworks for evaluation and verification (e.g., checklists or rubrics that guide students to test factual claims, compare alternatives, and justify why an AI-assisted output is credible and fit for purpose).

Summary

Direction. Retain the disciplinary foundations of marketing but shift the centre of learning from producing outputs to *interpreting, evaluating, and improving* AI-assisted work. Competence now means being able to steward brand identity, cultural meaning, evidential validity, and ethical exposure across multimodal, AI-mediated workflows. The key developmental focus is judgement.

Implementation. Embed AI within existing modules rather than isolating it. Use formats that make reasoning visible: studio and iterative co-creation, compare-and-improve critique, and live briefs with accountable deliverables. Align assessment to verification and justification rather than polish. Require explicit transparency through AI-use disclosure, prompt/version logs, reflective rationale, and oral defence. Make the six core competencies (ethics, AI literacy, comparative reasoning, strategic prompting, AI-augmented creation, AI-enhanced analysis) explicit in learning outcomes.

Assessment Signals. Model ethical accountability as a baseline professional expectation; consider pass/fail integrity gates for undisclosed or unsafe AI use. Weight evaluation, justification, and improvement more heavily than artefact quality.

Outcome. Graduates who can *think with AI*: exercising judgement, contextual sensitivity, and ethical responsibility—able to direct, evaluate, and justify AI-assisted work, and prepared to steward coherent, credible, and culturally resonant brand expression in contemporary marketing practice.

AI's Impact on Pedagogy

What Is Shifting—And Why It Matters

Marketing education is pivoting from delivering answers to cultivating the human capacities that govern how AI is used in practice. Graduates must exercise judgement (when to accept, adapt, or reject an output), read cultural and emotional context with empathy, weigh brand identity and market constraints with contextual intelligence, and act with ethical responsibility when automation risks harm or exclusion. These are concrete, assessable outcomes that prepare students to make accountable decisions in AI-enabled marketing environments.

From content transmission to designed human–AI inquiry

Teaching time moves from explanation to orchestration. In planned tasks, AI is given an explicit role—Tutor (explain/check), Teammate (co-create), or Tool (automate). Students must justify *if* they use AI, *how* they use it, and *why*—with reference to brand fit, evidence, feasibility, and ethics. Class dialogue shifts accordingly: an AI output is a claim to be tested, not a conclusion to accept.

Figure 4 shows educators see the clearest upside in creativity, feedback, and simulation; these are the contexts where AI amplifies exploration and speeds formative response. Perceived potential for adaptive tutoring is significant but not universal (~45%), suggesting potential that is still constrained by tooling, policy, or confidence. Accessibility benefits are present but uneven (~22%), indicating wins for multilingual and neurodiverse learners, yet highlighting the need for institution-provided, equitable access to tools.

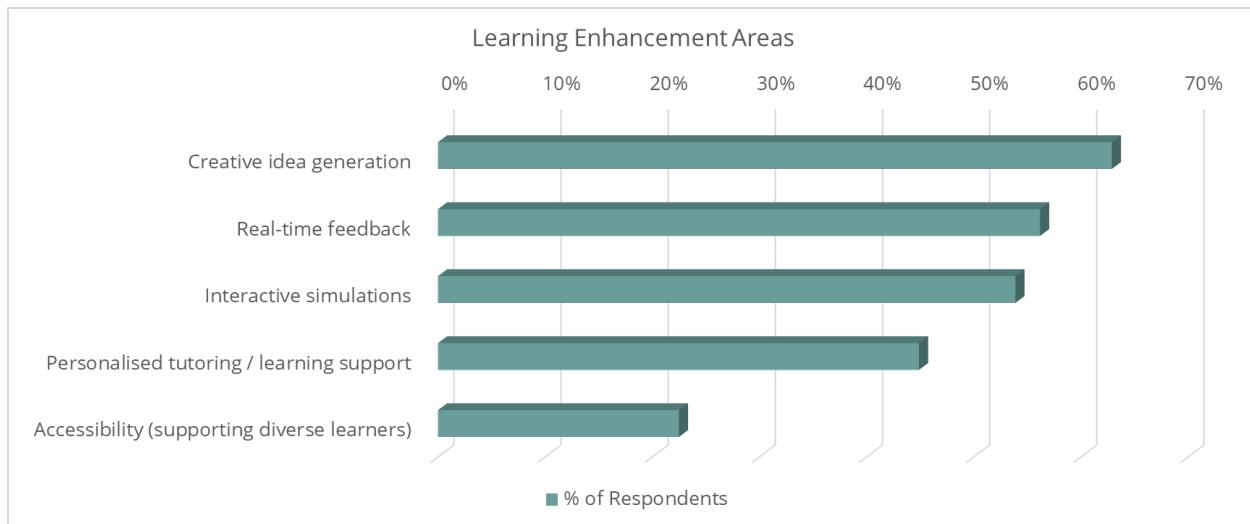


Figure 4. Areas where GenAI enhances learning (n = 89)

Figure 5 clarifies the trade-offs: loss of critical thinking is the dominant risk (91%), with over-reliance/misconduct flagged by over two-thirds. A majority (61%) see shortcircuiting of learning, and 39% note bias concerns—evidence that unchecked automation can erode reasoning and reproduce inequities without verification routines.

Figure 5. Biggest perceived risks in student learning from GenAI (n = 89)

Pedagogical benefits enabled through deliberate GenAI integration

While much discussion of GenAI in higher education focuses on risks, the evidence from survey responses and classroom studies shows that its value emerges only

when its use is intentionally designed. In well-structured learning activities, AI can expand the range of ideas students explore, accelerate iterative thinking, and surface insights that become the basis for deeper critique. These gains are not inherent to the technology; they arise when educators deliberately position AI as part of an inquiry process that foregrounds reasoning, comparison, and reflective judgement. Against this backdrop, the following opportunities highlight where GenAI meaningfully strengthens pedagogical practice when supported by transparent processes and accountable learning design:

- Creative acceleration & low-cost simulation: rapid ideation, stakeholder role-play, scenario testing.
- Scalable formative feedback: structured critique loops that help students iterate quickly.
- Accessibility: multilingual explanations and flexible supports for diverse learners.

These benefits materialise when activities make reasoning visible (prompt design, critique notes, verification records)—previously outlined in process-visible formats in Table 1 and assessment actions in Table 2—rather than hiding it behind polished artefacts.

Risks associated with unstructured or frictionless use

Without deliberate friction, students may accept ‘looks-right’ outputs, automate too much, or reproduce bias and poor sourcing. The pedagogic dangers include erosion of productive struggle and critical judgement. Use human → AI → human sequences, ‘argue-with-AI’ debates, and reflection-first prompts to preserve slow thinking and accountability.

Pedagogic stance: design for accountability

The sector is moving from prohibition to transparent, purpose-led use. Students should disclose when and how they use AI, keep prompt/version logs, and defend decisions in writing and orally. This stance aligns with the curriculum formats in Table 1 and the assessment actions in Table 2.

Figure 6 signals a pragmatic equilibrium: practice is converging on transparent, normed use. About half of respondents either allow AI with boundaries or require students to demonstrate how they used it; nearly half use AI interactively in class or permit independent use. A minority (15%) still prohibit AI, underscoring ongoing ethical, privacy, or capability concerns.

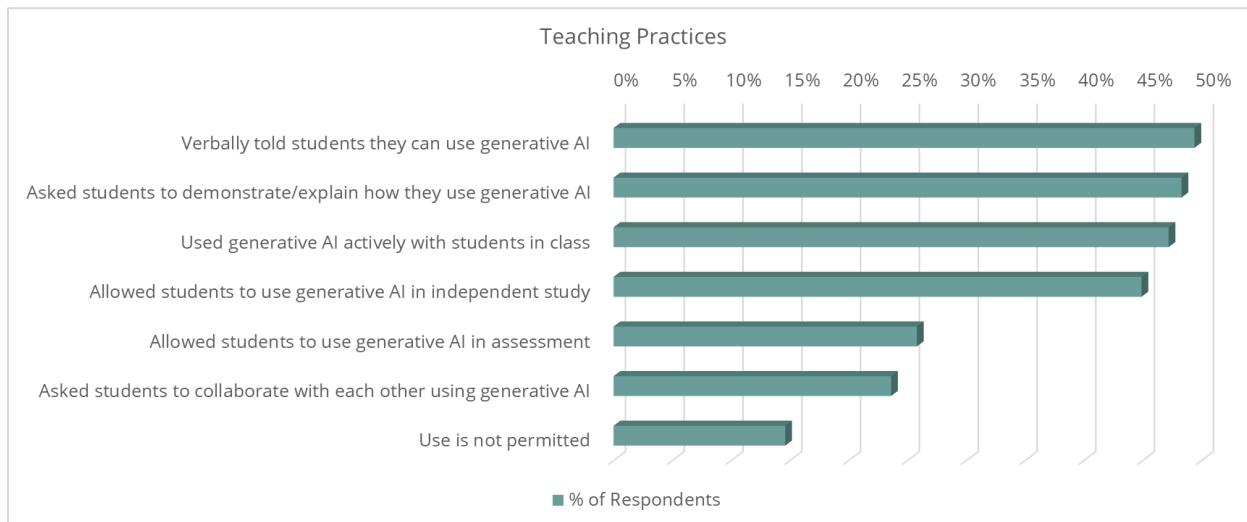


Figure 6. Teaching practices explicitly allowed or practised (n = 89)

Prompting-as-Pedagogy (beyond 'how to prompt')

As AI becomes embedded in inquiry-based learning, prompting shifts from a technical skill to a core pedagogical mechanism. Well-designed prompts function as structured thinking tools: they require students to externalise audience assumptions, strategic intent, and ethical considerations before generating an output. In this sense, prompt design operates as a form of strategic communication, not a technical trick—a way of making tacit marketing judgement explicit, examinable, and open to critique (Torkestani et al., 2025).

This reframes prompting as part of the *learning design* rather than an add-on skill. When students articulate constraints, specify evaluative criteria, or encode brand identity into a prompt, they are practising exactly the forms of judgement, justification, and contextual reasoning that AI-enabled marketing work demands.

From brief to prompt. Students learn to translate a marketing brief into explicit instructions that encode audience, tone, value proposition, constraints, and evaluative criteria—turning strategic intent into a testable prompt structure.

Core prompting strategies for marketing judgement

Once prompting is understood as a vehicle for reasoning rather than a technical shortcut, students need structured opportunities to practise different forms of prompt design and to see how each one shapes the model's responses. The following strategies exemplify how prompting can be used to surface assumptions, test alternatives, and make decision-making examinable. These are not simply ways of getting better outputs; they are pedagogical moves that help students articulate, critique, and refine the marketing logic behind those outputs.

- **Zero-shot versus Structured Prompting**

Compare 'plain instruction' prompts with scaffolded, stepwise prompts to demonstrate how structure affects coherence, relevance, and creativity.

- **Constraint-First Prompting**

Students specify brand voice, regulatory considerations, cultural sensitivities, or risk parameters *before* asking for creative output—foregrounding judgement rather than reaction.

- **Chain-of-Thought Prompting**

Students ask the model to show reasoning steps to surface assumptions, enabling critique rather than passive acceptance of outputs.

- **Self-Refinement Prompting**

Students instruct the model to review and improve its own output, teaching iterative quality control and performance justification.

- **Cumulative Reasoning / Role-Based Prompting**

Students allocate distinct roles in the prompt (e.g., strategist → verifier → editor) to simulate real marketing workflows and make reasoning accountable.

- **Critique and Compare Loops**

Students generate multiple variants, annotate weaknesses (e.g., tone drift, stereotyping, loss of brand meaning), and iterate toward fit.

- **Peer Review of Prompt Strategy**

Prompts and outputs—not only final artefacts—are evaluated collaboratively to assess alignment with market insight, evidence use, and ethical risk.

Pedagogical function. Prompting becomes a mechanism for teaching segmentation, positioning, brand coherence, and justification—cultivating judgement, not just operational fluency. See compare-and-improve task formats in Table 1 and the prompt/version log assessment actions in Table 2.

Verification as a Core Learning Routine

Verification becomes essential once students begin generating ideas and analyses with GenAI. As outputs become more fluent and plausible, the risk is that students accept them at face value without interrogating evidence, assumptions, or ethical implications. Embedding verification routines into every AI-assisted task therefore serves two purposes: it protects academic integrity, and it teaches the professional discipline of validating claims before they inform marketing decisions. The following lightweight checks operationalise this expectation and can be applied across modules and levels.

1. Provenance: cite and link sources; where retrieval is used, state how information was sourced or grounded.
2. Bias and brand-safety scan: check for stereotyping, cultural misalignment, and reputational risk.
3. Privacy/IP notes: record what data was included or redacted; use institution-approved tools for client work.
4. Fit-for-purpose justification: explain why the output suits the audience, channel, and objective.

Where feasible, compare multiple models or settings, reconcile differences, and explain the choice. This operationalises the assessment emphasis on verification in Table 2.

Preserving Productive Struggle Through Structured Challenge

To sustain meaningful struggle, learning activities should begin with human framing, move into AI-assisted exploration, and return to human interpretation and refinement. In practice, this means designing tasks where students first articulate assumptions or criteria, then use AI to generate options, and finally critique, adapt, or reject those options with reference to theory, evidence, brand context, and ethics. Structured debates with AI-generated claims, reflection-first prompts, and staged critique cycles maintain the slow thinking that deepens expertise. These approaches ensure AI accelerates exploration without eroding the reasoning that marketing education is designed to develop. These moves also align with the studio-style learning formats outlined in Table 1 where iterative reasoning and critique are central.

Make process a learning object

To reinforce these habits, educators should make students' decision-making processes visible and assessable. This involves standardising prompt/version logs, rationale notes, and brief decision journals so that students document how their thinking evolves across each human-AI-human cycle. Assessment should reward the clarity and rigour of critique, justification, and verification—not just the polish of the final artefact. These practices directly support the assessment actions detailed in Table 2, where evaluative reasoning and accountable use of AI form the core of judgment.

Inclusive pedagogy: enable, then equalise

AI can widen access when used to clarify concepts, translate materials, and scaffold study planning—particularly for multilingual, neurodiverse, or first-generation learners. However, these benefits only materialise when paired with guardrails and institution-provided access that prevent a divide between students who can pay for advanced tools and those who cannot. Educators should monitor equity impacts (e.g., participation patterns, outcomes, tool accessibility) and provide no-use or low-

use alternatives that still assess the same learning outcomes, ensuring inclusion without lowering expectations.

Studio Operations: Practical Classroom Moves

Integrate the following practices where they add distinctive pedagogical value and complement earlier sections:

- Live/simulated briefs with explicit guardrails and client-safe workflows (see Table 1).
- Sprint cycles: ideate → generate → critique → meliorate (improve with evidence).
- Red-team & bias-audit labs: students actively try to break outputs against brand constraints; then repair and document fixes.
- Oral defences/pitches: on-the-spot edits with probes into evidence, ethics, and trade-offs (see Table 2).
- Pair-prompts and prompt galleries: surface tacit strategies and make them discussable.

Differentiated pedagogic implications across levels

Although many discussions of GenAI in higher education treat 'AI pedagogy' as a single category, the demands placed on learners differ sharply across undergraduate, taught postgraduate, and doctoral levels. Each stage of study requires distinct forms of reasoning, evidence-handling, and ethical judgement—and GenAI interacts with these expectations in different ways. Without recognising these differences, educators risk designing activities that are either too complex for foundational learners or too superficial for advanced students, inadvertently widening the very judgement gaps this report identifies.

AI also amplifies existing transitions in the curriculum: undergraduates must build the capacity for slow thinking before scale; master's students must learn to coordinate full AI-enabled workflows; and doctoral researchers must protect epistemic originality in a landscape where generative systems can simulate

argument but cannot produce genuine inquiry. Yet these level-specific implications are largely absent from current sector guidance.

Table 6 therefore maps the pedagogic priorities at each level, highlighting the distinctive risks to guard against and the forms of learning design that best support responsible, high-quality human–AI collaboration across the full academic pipeline.

Highlights include:

- Undergraduate. Build habits of evaluation and reflection before scale. Emphasise critique, bias drills, prompt logs, and short verification-weighted tasks that reward careful checking over verbosity.
- Postgraduate Taught (Masters). Develop workflow fluency: studios and live briefs, role-based teams (e.g., prompt strategist, bias auditor, brand guardian), model comparison tasks, and oral defence of trade-offs.
- Postgraduate Research (PhD). Safeguard originality and methodological integrity. Use AI as a thinking surface (idea probes, error-finding), not a writing surrogate; maintain provenance protocols and adversarial critique practices. Current systems lack the depth for doctoral authorship; assessments should continue to privilege argument construction and method.

Table 6. Level-specific pedagogic priorities for AI-enabled marketing education

Level	Primary Learning Goal	Main Risk to Guard Against	Key Pedagogic Mode	Illustrative Design Moves
Undergraduate (UG)	Construct judgement and reflective habits	Epistemic passivity; premature automation	Structured critique; staged workflows; bias/audit drills	Live prompting demos; <i>argue-with-AI</i> critiques; prompt logs + reflection; simulations highlighting what AI misses; micro-assignments that grade verification rather than verbosity.
Postgraduate Taught (PGT / Masters)	Professional AI-enabled workflow fluency	Plausible-but-ungrounded strategy; brand risk	Studios, live briefs, verification checklists, role-based teams	Client/agency briefs; iterative creation labs; oral defences on trade-offs; model comparison tasks; assigned workflow roles (e.g., prompt strategist, bias auditor, brand guardian).
Postgraduate Research (PGR / PhD)	Epistemic originality and research integrity	Substituting synthesis for thought; methodological erosion	AI-reflection logs, provenance protocols, adversarial critique	Supervisory AI-use compacts; lab notebooks capturing model behaviour and bias; RAG/provenance standards; <i>mislead-me</i> red-team critiques of literature; citation-legitimacy and hallucination-detection workshops.

Educator Adoption, Confidence, and Ethical Concerns

Adoption of GenAI in marketing education is growing, but uneven. Importantly, educators' reservations should not be read as resistance or technophobia. Many concerns reflect legitimate professional responsibilities: safeguarding students' cognitive development, protecting client data, ensuring cultural and brand safety, and attending to sustainability. These are not barriers to innovation but signals that responsible integration requires careful design, not acceleration for its own sake.

Across our consultations, four categories of concern emerged consistently. Each highlights a valid risk *and* a curriculum response that can address it without retreating to prohibition. Table 7 summarises these issues and translates them into actionable design implications.

Table 7. Educator concerns guiding responsible integration of GenAI in marketing curriculum design.

Concern	Why it matters in teaching	Implication for curriculum design
Environmental / energy impact of large models	AI systems draw on substantial computational power, with uneven global sustainability effects	Include sustainability discussions in digital ethics and brand responsibility modules; enable 'low-use' or 'no-use' task alternatives where justified
Bias, stereotyping, and cultural misalignment	Models reproduce patterns of dominant discourse	Build bias-identification routines into critique tasks; encourage brand/cultural fit testing
Data privacy and client confidentiality	Many marketing contexts involve proprietary materials	Require redaction-first workflows and institution-approved tools for client-based briefs
Professional identity and cognitive integrity	Concern that AI may bypass the 'struggle' that builds mastery	Use human→AI→human refinement sequences that

Concern	Why it matters in teaching	Implication for curriculum design
		preserve interpretation, justification, and reflection

Purpose-Led Integration

The aim is neither mandatory use nor blanket rejection of GenAI within marketing programmes. Instead, the task is to integrate GenAI purposefully—in ways that strengthen disciplinary learning, enhance judgement, and uphold ethical and professional standards. At both programme and module level, educators should construct conditions under which learning remains human-led, evidence-informed, and ethically grounded. This includes:

- Allowing discipline-justified variation, recognising that areas like brand strategy may require more stringent guardrails than analytics or creative development.
- Embedding sustainability, verification, and bias-scanning into assessment criteria, rather than treating them as optional or supplementary discussions.
- Directing Continuing Professional Development (CPD) toward facilitation, verification, ethical risk, brand safety, and assessment, while recognising that educators vary significantly in their prior experience with GenAI. Initial CPD should therefore support basic familiarity—enough to understand capabilities, limitations, and risks—but the emphasis should progressively shift from tool operation to pedagogical judgement and responsible integration.
- Providing safe, non-punitive spaces for staff to test, critique, or decline use, supported by a clear pedagogical rationale rather than fear of missteps.
- Recognising workload implications, for example through timetabled studio coaching, shared case banks, and collaborative resource development.

This stance positions educators not as passive adopters of technological tools but as stewards of professional standards—ensuring that GenAI enhances, rather than

erodes, the intellectual, ethical, and disciplinary foundations of marketing education.

Actionable Guidance

For educators

- Integrate GenAI within disciplinary workflow, not as an add-on. Pair AI-generated outputs with theory, evidence, market insight, and brand context so students learn to interpret and justify—not merely produce.
- Make responsible data practice examinable. Include routine redaction steps, privacy/IP checks, and ‘offline-first’ reasoning in client or proprietary tasks.
- Build marketing-specific AI literacy, focusing on:
 - Brand-voice prompting
 - Persona critique and cultural resonance checks
 - Synthetic customer journeys and desk-research scaffolds
 - Bias and representational-risk audits
(All platform-agnostic and transferable.)
- Use live/simulated briefs to compare human-only and human+AI workflows. Facilitate reflection on speed, quality, risk, and brand-coherence trade-offs.
- Normalise critique through failure cases—off-brand tone, fabricated sources, stereotyping—to model interpretive judgement as central to marketing practice.
- Preserve inclusion without creating an access divide. Use institution-provisioned tools, multilingual scaffolds, and guided study support, paired with guardrails to avoid dependency.
- Acknowledge and respect educator variation. Differences in adoption often reflect sustainability, privacy, or disciplinary-identity concerns rather than resistance. Encourage paced, rationale-led integration.
- Make workload manageable. Use designed studio rhythms—short critique cycles, prompt galleries, shared case banks, reusable verification templates—so staff time focuses on pedagogy, not troubleshooting.

For faculties and institutions

- Publish a clear, enabling policy stance covering:
 - Permitted uses
 - Never-upload rules
 - Standardised disclosure expectations
 - A short, supported list of institution-approved tools
- Invest in capability where it matters. CPD should prioritise:
 - Facilitation of human–AI inquiry
 - Bias and representation auditing
 - Intellectual-property and privacy protections
 - Brand safety and reputational risk

(Not one-off ‘how to use Tool X’ demos.)
- Resource the pedagogy. AI-enabled studio teaching requires live critique, iteration guidance, and reasoning probes; these must be timetabled and recognised as workload.
- Support diverse adoption trajectories. Provide non-punitive experimentation spaces, peer-led practice circles, and optional slow-adoption pathways grounded in evidence and ethics.
- Align teaching with industry and professional bodies. Co-teach studios with practitioners; assess for disclosure, rationale, and brand-safe decision-making—not polish.
- Monitor equity over time. Track whether AI provision advantages or marginalises groups and adapt institutional access accordingly.

Summary

Pedagogic direction. Marketing education is shifting from the delivery of correct answers to the facilitation of human–AI inquiry. The central learning outcome is accountable judgement: students must learn to interrogate, contextualise, and justify AI outputs, not simply accept them.

Core design moves.

- Define the AI role in each task (Tutor / Teammate / Tool).
- Require verification-first routines (provenance, brand fit, cultural and ethical risk).
- Protect conceptual effort through human → AI → human refinement cycles.
- Make reasoning visible via prompt logs, rationale notes, and oral defences.
- Support inclusion through institution-provided access and monitored scaffolds.

Differentiation across levels.

- UG: Build habits of evaluation and slow thinking.
- PGT: Develop workflow fluency and brand-safe decision-making in studio contexts.
- PGR: Safeguard originality, methodological reasoning, and epistemic integrity; AI may support inquiry, not authorship.

Educator confidence and purposeful variation. Differences in adoption reflect legitimate professional responsibilities—sustainability, privacy, brand safety—not resistance. Purpose-led integration ensures AI strengthens, rather than bypasses, human judgement.

Outcome. Marketing remains a human-centred discipline. AI can accelerate production and expand exploration, but meaning-making and ethical responsibility stay with the learner. Well-designed pedagogy ensures that accelerating capability does not diminish the depth, integrity, or cultural intelligence that marketing demands.

AI's Impact on Assessment

How Assessment Is Shifting—and Why Validity Now Depends on Visible Reasoning

As GenAI reshapes how students produce work, assessment has become the frontline where credibility and standards must be actively protected. What is emerging across the sector is not speculative discussion but concrete redesign: educators are already reconfiguring tasks to ensure that what is assessed is the student's reasoning, not the model's fluency.

The sector is already moving to change assessment. Figure 7 shows ~80% of respondents have moderately (43%) or significantly (37%) adapted assessment, with only 2% reporting no plans. This is not anticipation—it is implementation.

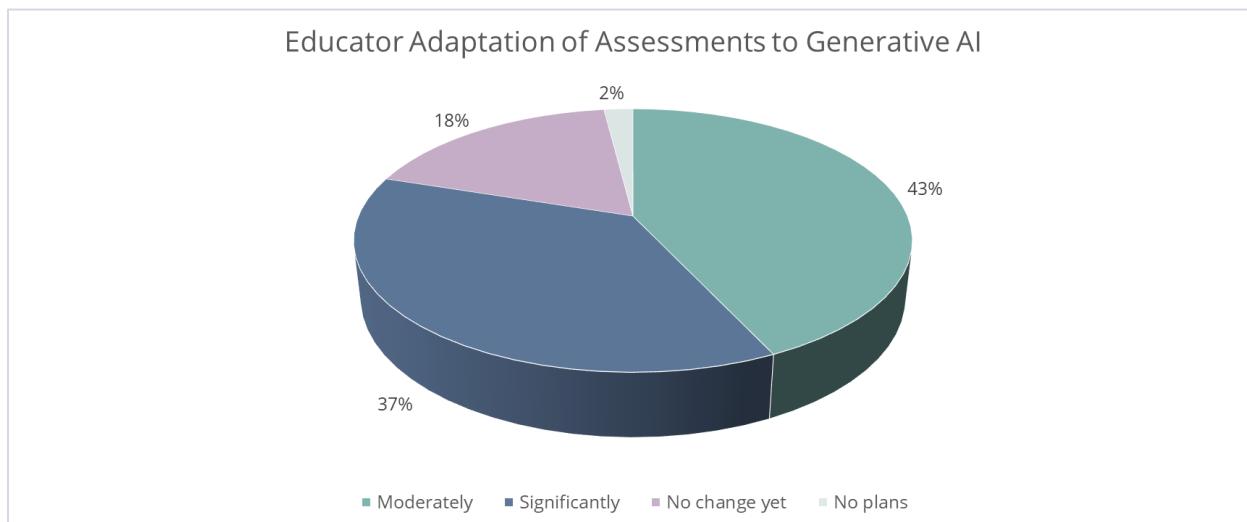


Figure 7. Extent to which educators have adapted assessments in response to GenAI (n = 89)

Figure 8 illustrates a migration toward project-based work, in-class reasoning tasks, AI-inclusive assignments with required disclosure, and increased use of reflection and oral components to surface thinking. The pattern suggests educators are prioritising formats that naturally capture decisions over time rather than single-shot products.

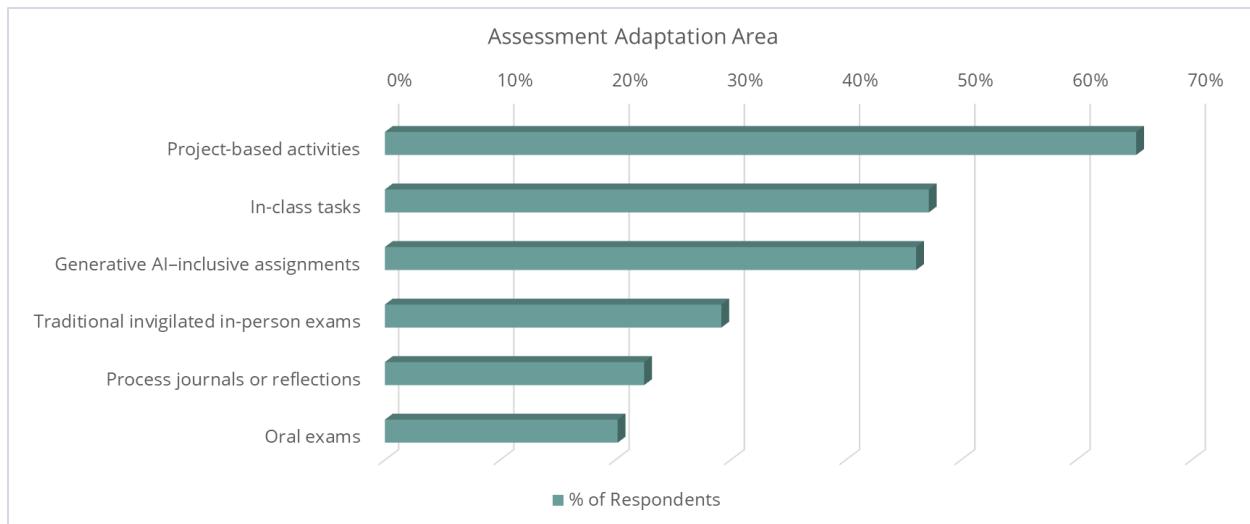


Figure 8. Assessment adaptations in response to GenAI (n = 89)

Figure 9 pinpoints the pressure points—competencies tied to judgement and originality are hardest to evidence when assessment relies on polished artefacts alone. This suggests that validity rests on how decisions are made and justified, not on how finished the output looks.

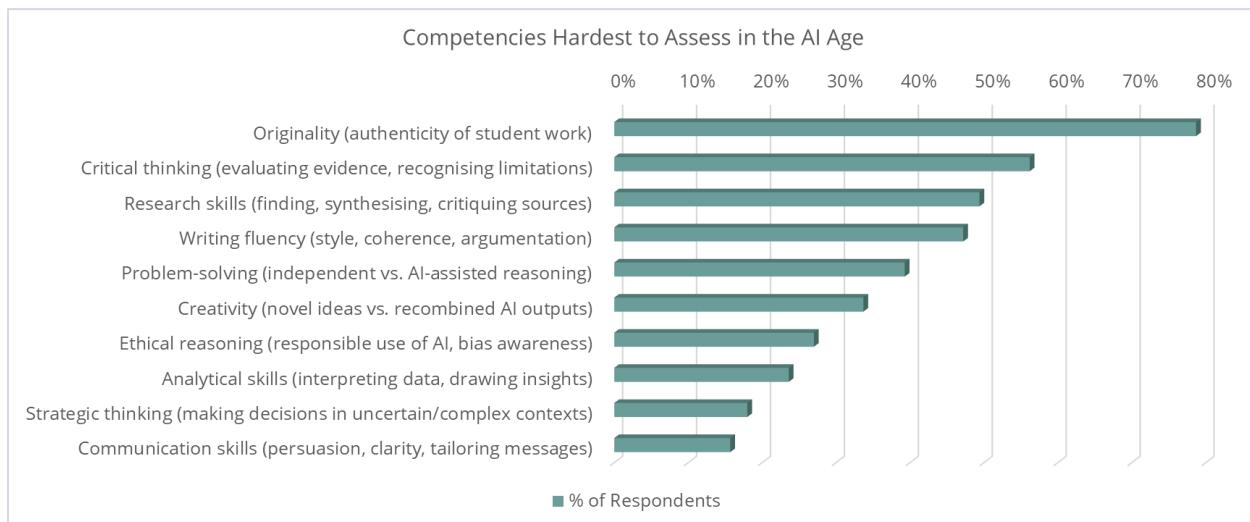


Figure 9. Competencies most difficult to assess (n = 89)

Purpose First: Re-Establish Assessment Validity

GenAI has not broken assessment; it has illuminated tasks that capture format, not thinking. Longstanding critiques of essays and closed-book exams note their tendency to reward reproduction over judgement (Boud & Falchikov, 2006).

Constructive alignment still applies (Biggs & Tang, 2011), but with a sharper question: what type of reasoning does this task *elicit* and *evidence*? If a brief can be completed via a single prompt, the task is validating mimicry rather than disciplinary decision-making.

Reframe validity around three forms of autonomy that students must make visible:

- Cognitive autonomy — problem framing, synthesis, and insight.
- Ethical autonomy — bias and risk awareness; defensible choices.
- Procedural autonomy — transparent workflow and justification.

Make process visible—without overload

Evidence should be lightweight, auditable, and tied to judgement. These practices build on the process-visible principles outlined earlier (see Table 2), ensuring that what is captured is meaningful for assessing reasoning rather than adding unnecessary burden.

- Five-line AI-use declaration (tool used; what changed; verification performed; risks considered; final justification).
- Version deltas (what was added/removed and why).
- Sampling vivas (brief oral checks on authorship and reasoning).
- Brief-to-prompt sheets that externalise strategic prompting choices.
- Checkpoint ‘tickets’ (90-second screen-captures explaining a decision).
- Red team notes on bias, fit, and risk.
- Verification receipts for provenance, brand safety, and purpose fit.

These practices move originality from *who typed the sentence* to who made which decisions and why.

What To Assess—and How

To maintain validity in AI-enabled contexts, assessment design must align intent with method. The sequence below—mapping purpose → pedagogy → format—

provides a structured way to ensure that reasoning remains traceable and standards defensible (see Table 8):

1. Start with the intended capability (e.g., critique, inquiry, professional judgement).
2. Set the AI role (prohibited, constrained, or required).
3. Choose formats that surface thinking (micro-defences, critique, verification steps).
4. Align the rubric to autonomy and justification—not polish alone.

For educators committed to essays (often chosen for scalability given high student numbers), consider the time-bounded in-class memo, oral micro-defence, or concept map with rationale as essay-adjacent designs that preserve feasibility while evidencing thinking.

Table 8. Mapping common assessment purposes to AI-aware formats that surface reasoning and maintain validity.

Purpose of assessment	Pedagogical approach	Traditional form	AI-aware adaptation
Certify disciplinary mastery	Lecture-based, large cohort	Closed-book exam; essay	Time-bounded in-class memo; oral micro-defence; concept mapping; peer-teaching explainer with Q&A
Develop higher-order thinking	Flipped classroom	Pre-class quizzes; essay	<i>AI baseline + improve</i> task; short transfer questions; assumption-audit task; analogy stress-test
Foster inquiry & problem-solving	Project-based learning	Group project + presentation	Process + product grading with lightweight AI-use evidence; <i>beat-the-AI plan</i> challenge; method choice

Purpose of assessment	Pedagogical approach	Traditional form	AI-aware adaptation
			justification log; failed-path analysis
Consolidate experiential learning	Work-integrated learning	Client project; reflective essay	Client-linked portfolio with structured AI reflection + supervisor/client feedback; counterfactual reflection; evidence triangulation task (compare AI output, client data, and lived experience)
Test decision-making & adaptability	Simulations / role play	Simulation metrics; debrief report	AI <i>sparring partner</i> generating alternative scenarios; grading rationale and adaptation; forced mid-simulation constraint shift; time-pressured justification memo explaining the decision made despite AI advice
Prepare for employability & tool literacy	Cross-cutting (capstone/portfolio)	Capstone report; portfolio	Explicit rubric for autonomy: framing, verification, attribution, professional voice; tool-switch justification; professional handover artifact

Integrity, originality, and creativity: treat with nuance

Originality is now best demonstrated through critical intervention rather than surface novelty (Acar, 2024; Luo, 2024). Define at module level what counts as an original contribution (e.g., reframing a problem, generating defensible insight, justifying brand-safe adaptation). Grade how students adapted, verified, and justified decisions.

Three lenses make creativity visible in AI-enabled work:

1. Melioration (purposeful improvement). How effectively does the student refine model outputs using audience insight, evidence integration, tone/brand alignment, feasibility checks, and ethical judgement? Creativity lives in the adjustments, not the baseline.
2. Transfer robustness. Does the idea hold when key conditions change (segment, channel, tone, market)? Can the student adapt—and explain why those adaptations make sense?
3. Conceptual coherence. Across assets and touchpoints, does the narrative remain strategically and emotionally consistent? In marketing, creativity is the stewardship of meaning under constraint.

To support fair evaluation, declare context constraints upfront (voice or tone standards, regulatory expectations, evidence requirements, and risk appetite) so creativity is judged in realistic professional conditions rather than free-floating ideation. Where possible, provide exemplars that distinguish surface novelty from substantive originality (e.g., identical copy but different evidence logic, risk handling, or contextual fit).

Infrastructure Shapes Assessment

Enterprise deployments (e.g., Oxford's university-wide collaboration with OpenAI, King's College London's adoption of Microsoft Copilot, and the London School of Economics' adoption of Anthropic's Claude) are promoted as safer, more equitable environments. However, they also shape how assessment evidence is generated and verified. Expectations should therefore be made explicit:

- Log visibility and version recording — Some platforms restrict access to prompt/response histories. Where logs cannot be exported, specify how

students should evidence process (e.g., screenshots, version trails, short screencasts).

- Model and parameter comparison — If external tools are limited, build model/version/temperature comparisons *within* the approved environment to maintain AI literacy rather than platform dependency.
- Privacy and client data protection — Require redaction-first workflows and ‘offline-first’ practices where briefs involve proprietary or sensitive material.
- Version drift and replicability limits — Note model/version at submission and evaluate the quality of decisions, not the exact reproducibility of outputs.
- Accessibility and equity — Institutional licensing reduces paid-tool inequity but may limit access to assistive features some students rely on; provide clear accommodations and alternatives.

In short, infrastructure is part of assessment design. State where and how process evidence will be captured and what counts as acceptable documentation within approved tools.

Roles and responsibilities

AI-enabled assessment depends on clarity about who is responsible for what—academically, procedurally, and ethically. Clear role definitions ensure that expectations are consistent across modules, transparent to students, and defensible under institutional and external scrutiny. The framework below outlines core responsibilities at each level and provides a basis for producing coherent staff- and student-facing assessment documentation.

Educators (module/course leaders)

- Specify the AI role per task (Prohibited / Constrained / Required), with examples of acceptable and unacceptable uses.
- Publish a concise verification checklist students must complete (provenance, brand-fit/ethics scan, privacy/IP notes, fit-for-purpose rationale).

- Sample understanding via short viva/micro-defences or spot checks focused on decision-making, not recall.
- Assess reasoning first: weight framing, verification, and justification above surface polish in rubrics.
- Record decisions on suspected misuse using agreed evidence standards (e.g., version trails, declarations).

Programmes / Quality Assurance

- Align outcomes and rubrics to autonomy (cognitive, ethical, procedural) and ensure parity across modules.
- Set integrity thresholds (e.g., pass/fail gate for undisclosed or unsafe AI use) and provide appeal procedures.
- Monitor equity impacts (tool access, accommodations) and update guidance each term.
- Provide approved tools and templates (verification receipts, prompt/version logs, viva prompts).

Students (practitioners-in-training)

- Disclose, defend, and document AI use as instructed; compare models/settings where permitted; evidence purpose-fit, brand safety, and data-protection decisions.

Required assessment documentation

- Staff assessment brief (one page): task purpose; permitted AI role(s) with examples; required process evidence; autonomy-weighted rubric; sampling/viva plan.
- Student task sheet (derived): plain-language summary of purpose; what AI use is allowed; what to submit (product + process evidence); how work is graded; support and integrity points.

- External partner note (where relevant): data handling, confidentiality/redaction rules, and brand-safety expectations.
- Consistency clause. Specify whether all modules use the same policy terms and evidence templates and whether deviations must be approved by programme/QA and communicated in writing before the task begins.

Summary

Assessment Direction. Validity now depends on whether assessment tasks make students' reasoning visible. The central question is no longer *whether* AI was used, but *how* students frame problems, evaluate outputs, manage risks, and justify decisions. Assessment must evidence cognitive, ethical, and procedural judgement—not just polished artefacts.

Implementation Priorities. Design each task around a clear human–AI relationship (Prohibited / Constrained / Required). Require concise process evidence that can be reviewed quickly (e.g., AI-use declaration, rationale notes, version deltas, verification receipts) and use formats that naturally surface thinking (micro-defences, critique sequences, staged decision checkpoints). Rubrics should weight justification, brand/market fit, and risk awareness above fluency or volume of output.

Enabling Conditions. Assessment validity is supported by the environment around it. Ensure approved tools allow process evidence to be captured (logs, redaction, versioning). Align outcomes, rubrics, and language across modules to reduce ambiguity. Provide staff support for facilitation, verification, and ethical decision-making—not just tool familiarity.

Outcome. Graduates who can *direct* AI, not simply use it. They can interrogate, adapt, and defend outputs, explain trade-offs, recognise ethical and brand risks, and demonstrate accountable professional judgement. These capabilities are credible to educators, defensible to quality assurance, and valued in industry.

AI's Impact on Employability

Why Employability Needs Reframing

GenAI has changed where value is created in marketing. Drafting, segmenting, and first-pass analysis can now be automated or heavily accelerated (Dwivedi et al., 2023; Grewal et al., 2024), with reported productivity gains when automation is paired with human oversight (Grewal et al., 2025). The graduate premium therefore shifts from producing artefacts to orchestrating judgement: framing problems, setting constraints, interrogating outputs, and explaining defensible choices under brand, legal, and ethical conditions.

This reframing matters for three reasons that extend beyond 'tool skills':

1. Task reallocation is uneven. Production tasks commoditise fastest; interpretation, constraint negotiation, and relationship work rise in relative value.
2. Risk now travels with the work. Bias, privacy, IP exposure, and brand-safety failures scale with automation; employable graduates can spot and mitigate these risks early.
3. Organisations are at different AI maturities. Many employers need 'workflow stewards' who can operate within constrained stacks, document process, and justify decisions—capabilities built through the verification-first and process-visible practices outlined earlier, not through tool memorisation.

Therefore, employability becomes a question of capability and accountability, not just fluency. Graduates must show they can decide *when* to use GenAI, *how* to adapt it, and *why* a particular course of action is responsible in context.

GenAI operates through language, producing messages that sound coherent, targeted, and brand aware. In marketing, however, value depends on how meaning is shaped—how voice, tone, framing, and narrative connect with audience context and organisational identity. AI-generated outputs can appear polished while subtly shifting emphasis, diluting positioning, or introducing representational distortions. Developing AI capability in marketing education therefore requires communication

literacy: the capacity to analyse how messages are constructed, to identify where linguistic patterns embed assumptions, and to revise outputs so they align with brand strategy, ethical standards, and cultural nuance. This aligns with message design logic and contemporary text analysis research, where communication reflects underlying reasoning and intent, not surface fluency (Berger et al., 2020; Herhausen et al., 2025). In practice, students must learn to treat AI outputs as provisional language acts that require critique, contextualisation, and justification. This positions GenAI as a space for practising professional judgement in communication, rather than a mechanism for producing finished copy.

AI-generated content should be treated as proposals rather than proof. When models generate summaries, insights, or consumer profiles, they are producing statistically patterned language that may sound authoritative but may not be grounded in real data, audience behaviour, or market signals. Students therefore need routines that distinguish claims from evidence: checking provenance, tracing sources, and verifying whether interpretations are supported by credible datasets. This shifts the role of marketing education toward cultivating evidence awareness as part of communicative judgement, ensuring that fluency does not substitute for validity.

Figure 10 shows that respondents prioritise critical thinking, empathy, collaboration, and ethical reasoning as the most enduring sources of value. Strategic judgement and communication follow closely. Together, these findings reinforce that employability depends on the human capacities that make AI's speed useful—reading context, mediating trade-offs, and sustaining trust.

Figure 10. Human skills viewed as irreplaceable in marketing education (n = 89)

Workforce Signals: AI is Reshaping Entry Pathways and Skill Expectations

Workforce trends show both acceleration and disruption as AI becomes embedded in marketing practice. 38% percent of marketers report efficiency gains in social media workflows, with around one-third also reporting improvements in idea generation (34%), creativity (33%), content production (33%), and cost reduction (32%) (Statista, 2024). At the same time, while 49% of practitioners welcome AI in the workplace, 13% still view it as a threat, reflecting persistent concerns about preparedness and early-career displacement (Hays, 2023), reinforced by PwC's reduction of 200 entry-level roles as workflows automate (Fore, 2025). The World Economic Forum (2025) forecasts that 39% of workers will require substantial skill shifts by 2030, and UK CEOs expect most of their workforce to need new AI-related competencies within three years, with AI-enabled roles attracting an estimated 56% wage premium (PwC, 2025). Together, these signals reinforce that employability now rests not on tool familiarity, but on the ability to collaborate with AI systems, justify decisions, manage risk, and support organisational adaptation.

Implication: Graduates are now expected to collaborate with AI systems, justify decisions, manage brand and ethical risk, and support organisational adaptation—not simply operate tools.

What competencies should educators prioritise for AI-era employability?

Alongside irreplaceable human skills, respondents identified specific AI-era competencies. Figure 11 shows that respondents prioritise competencies that enable accountable use and oversight of AI. Highest-rated are human-AI collaboration, prompt/interaction design, AI evaluation and discernment, critical thinking in an AI-saturated environment, and data literacy. Governance-oriented capabilities—data ethics and governance, AI ethics (bias, accountability, transparency), privacy and security awareness, and regulatory/compliance knowledge—sit ahead of deeper technical build skills. Lower down are items such as rapid experimentation and applied innovation, signalling that, in educators' judgement, programmes should emphasise directing, interrogating, and defending AI over engineering models from scratch.

Figure 11. Educators' views on the most important AI-era competencies for marketing graduates (n = 89).

Implication for employability

If curricula mirror these priorities, graduates will be prepared to steward AI in brand and organisational contexts—able to explain choices, evidence provenance,

and manage risk—rather than to operate as engineers. This sets up the next section’s focus on the value of human–AI collaboration in practice, followed by industry perspectives that illustrate how these educator-identified competencies are received in the workplace.

Human–AI collaboration as the value factor

The differentiator is the ability to translate automation into brand-safe outcomes. Graduates who can (i) recognise when outputs are insufficient or inappropriate, (ii) justify non-use or low use of automation, and (iii) adapt model outputs to audience, tone, and channel are likely to be judged more employable. This is a shift from AI tool user to ethical interpreter and workflow steward.

Graduates should evidence four capabilities that connect pedagogy to practice:

- **Purposeful AI use:** selecting when and why AI supports inquiry, creativity, or analysis.
- **Verification and adaptation:** applying brand tone, evidence standards, ethical filters, and market context.
- **Hybrid collaboration:** working productively with teammates *and* model-generated artefacts.
- **Ethical and contextual judgement:** recognising stereotyping, privacy exposure, persuasion harms, and sustainability issues—and responding appropriately.

Industry Voices

AI is transforming the marketing industry, impacting everything from brainstorming and editing to strategy, content creation, and design. As a result, we now expect more from graduates than ever before. Our interns have access to AI tools, and our team keeps pace with new developments. These tools offer clear advantages, but they also present new challenges. GenAI can refine ideas quickly—but the quality of the output depends entirely on the quality of the

input. Understanding fundamentals and applying critical thinking remain essential.

I've noticed a growing tendency for young professionals to overly rely on AI for research, summarising, and content creation. Without enough experience to evaluate the results, they sometimes accept outputs at face value. I've seen work presented that is either too complex to be applied meaningfully or too shallow to add value. When asked to justify or correct the work, the response is sometimes that "AI did it," revealing a disconnect between the output and personal responsibility for it.

In the midst of rapid change, we cannot lose sight of the foundations. We still need a deep understanding of clients—their challenges, goals, and audiences. This remains the lens through which every decision should be evaluated. Alongside this, success now requires an experimentation mindset. Marketing is no longer about finding one perfect answer; it is about forming hypotheses, testing ideas, observing behaviour, and learning iteratively. This protects professionals from becoming passive AI users. GenAI outputs should be treated as starting points—not conclusions.

Young professionals will need AI proficiency to remain competitive. But those who thrive will pair speed and creativity with rigorous thinking, curiosity, and a commitment to learning-by-doing. AI can accelerate work—but critical thinking, judgement, and creativity remain irreplaceably human.

— **Sanja Gardašević Janion,**

CEO, Alicorn Digital Agency

GenAI is not just another technological trend—it is reshaping the rules of marketing and changing what employers expect from graduates. Technical skill alone is no longer enough. The qualities that will define the next generation of marketing professionals are those that cannot be automated: creativity, ethical judgment, and strategic thinking. The future belongs to those who combine AI fluency with a human-centred mindset.

Marketing has always required creativity, data interpretation, and strategic insight. GenAI now accelerates and automates many of these activities—from content creation and campaign optimisation to CRM and audience segmentation. At the same time, future marketers must master the underlying processes behind these tools. Those who can merge technical fluency with human understanding will shape the next era of marketing.

One of the biggest misconceptions about GenAI is that it will make marketing purely technical. In reality, the opposite is true. As AI handles more of the repetitive work, the human role becomes more strategic, creative, and empathetic. The future marketer will not simply be a tool user, but a translator—someone who can turn machine-generated possibilities into meaningful human experiences. In a world flooded with AI-generated content, authenticity will be the ultimate competitive advantage.

Key graduate attributes for the AI era

- AI fluency and smart prompting: understanding how GenAI reasons, where it fails, and how to guide it effectively.
- Data-driven strategy: transforming data into insight and making judgement-led decisions.
- Human creativity: shaping stories, meanings, and cultural resonance—beyond what AI can mimic.
- Ethical leadership: addressing bias, privacy, transparency, and accountability.
- Customer-centric thinking: keeping marketing grounded in empathy and real human needs.
- CRM and personalisation skills: designing journeys that feel authentic, not automated.
- Adaptability and continuous learning: evolving with tools while maintaining strategic clarity.

Technical proficiency with GenAI is becoming a baseline expectation. The true differentiator will be a human-centred approach. AI can model behaviour, but it cannot feel, empathise, or intuit meaning. Employers will value graduates who can ask the right questions, challenge assumptions, and ensure technology serves strategy.

The future belongs to marketers who pair technical fluency with creativity, ethics, and humanity.

— **Nemanja Đurašković, MSc**

Director of Marketing, Communications & Customer Relationship Management,
Crnogorska komercijalna banka a.d. Podgorica

The employability agenda now requires shared accountability across students, programmes, and employers. Table 8 (see previous Assessment section) outlined AI-aware assessment formats that also function as employability evidence. Micro-defences, verification receipts, and prompt/version logs give hiring managers concrete material to evaluate reasoning.

Table 9 and 10 translate this into specific capability expectations and privacy-safe collaboration models.

Table 9 maps capabilities at student, employer, and programme levels and the risks when they are absent. It can be used to align graduate attributes with hiring criteria and internal quality assurance.

Table 9. Capability implications for students, institutions, and employers

Level	Required Capability	Risk if unsupported	Educational Response
Individual student	AI literacy + judgement + reflective agency	Over-reliance; low criticality; employability gap	Structured critique, verification-first workflows, reflective defence

Level	Required Capability	Risk if unsupported	Educational Response
Organisation / Employer	Workforce that can adapt tools responsibly	Brand exposure; compliance risk	Recruit graduates who can <i>explain</i> and <i>justify</i> decisions
Institution (Programme-Level)	Curricula that embed AI-enabled reasoning	Outdated graduate attributes; uneven readiness	Integrate AI as transversal capability in all marketing modules

Table 10 outlines models supporting evolving industry collaboration and work-integrated learning. These models specify how universities and industry can co-create authentic AI workflows without exposing client data—so students practise the governance layer employers actually need. More specifically, this table outlines models (redacted datasets, synthetic profiles, shared workflow frameworks, practitioner defences) that let students practise brand stewardship, bias auditing, and narrative coherence—the human work automation cannot replace.

Table 10. Privacy-safe industry collaboration models for AI-enabled marketing workflows

Collaboration Need	Practical Model	What This Enables
Client-safe live briefs	Redacted datasets, synthetic customer profiles, and brand-specified tone/identity guardrails	Students practise strategic prompting, brand stewardship, and verification without exposing sensitive information
Shared workflow frameworks	Agreed steps for prompt logging, version control, ethical scanning, and brand-alignment checks	Employers can evaluate graduates on reasoning and decision-making, not just output quality

Collaboration Need	Practical Model	What This Enables
Advisory roles for practitioners	Agency and brand partners contribute to brief design, critique sessions, and final defences	Students experience authentic stakeholder reasoning under constraint
Evolving internship expectations	Placement tasks centred on evaluation, refinement, bias detection, and narrative coherence—not only asset production	Students learn the human judgement layer that automation cannot replace

These partnership models align employability development with contemporary practice: graduates learn not only how to use AI, but how to govern, adapt, and justify its use in real organisational contexts.

Supporting employability: immediate actions

For careers teams

- Translate process artefacts (AI-use statements, verification receipts, short viva recordings) into portfolio evidence of judgement.
- Coach interview answers that explain how candidates directed and verified AI.
- Signal to employers that graduates are trained to govern AI use, not just operate it.

For programme leaders

- Make 'AI-enabled judgement' a named graduate attribute across modules.
- Prioritise staff capability in facilitation, critique, brand safety, ethics, and privacy/IP.

- Guarantee equitable access to institution-approved tools so employability is not paywalled.

Summary

Employability now rests on graduates' ability to direct, evaluate, and justify AI-assisted work. The value is not in producing artefacts faster, but in exercising judgement: deciding when to use AI, shaping outputs to brand and audience, and recognising when automation risks harm, bias, or loss of meaning.

Marketing education must therefore prioritise capabilities that make AI's speed accountable—verification, contextual reasoning, hybrid collaboration, brand stewardship, and reflective decision-making. These are developed through process-visible assessment and practice with real or simulated briefs, not through tool memorisation.

Work-integrated learning and industry partnerships (Table 11) play a central role: they allow students to practise governance, not just production, within privacy-safe and brand-safe workflows.

Outcome: Graduates who can steward AI responsibly in ways that are credible to employers, defensible to quality assurance, and capable of adapting as marketing practice evolves.

AI's Institutional Policy, Governance and Readiness

The higher education sector has moved rapidly to respond to GenAI, but policy frameworks continue to lag behind practice. While universities increasingly publish statements on acceptable use, academic integrity, and disclosure, these are often reactive, consolidating after educators and students have already begun experimenting (Jin et al., 2025). The result is fragmentation: interpretation varies across programmes, assessment policies differ by module, and staff development has not kept pace with pedagogic change.

At the same time, AI governance is reshaping the regulatory environment in which universities operate. The EU AI Act (2024) has introduced risk-tiered compliance and transparency obligations. The US has prioritised innovation-led acceleration. The UK takes a 'principles-led, flexible' approach, operationalised through the Government Digital Service's 10 Principles for Safe and Responsible AI Use (2025):

1. You know what AI is and what its limitations are
2. You use AI lawfully, ethically, and responsibly
3. You know how to use AI securely
4. You maintain meaningful human control at key stages
5. You understand how to manage the AI lifecycle
6. You use the right tool for the job
7. You are open and collaborative
8. You work with commercial colleagues from the start
9. You build and maintain necessary skills and expertise
10. You align practice with existing organisational policy and assurance frameworks.

These principles align closely with the needs of marketing education, where judgement, context, ethics, and brand stewardship remain non-automatable

requirements. However, most universities have not yet translated these principles into curriculum, assessment design, or programme-level graduate capabilities.

Current State of Institutional Policy

Many universities now publish statements on AI use, but these often outline principles without showing staff how to operationalise them in teaching. The result is uneven implementation across modules and programmes. The four most common areas of institutional policy—and what they mean specifically for marketing education—are summarised below in Table 11.

Table 11. Key areas of institutional policy on GenAI and their implications for marketing education

Policy Focus	Current State in Institutions	Implication for Marketing Education
Academic integrity & assessment rules	Clear expectations but variation in interpretation across programmes and modules	Requires consistent AI-use statements, process-visible assessment design and structured cross-module dialogue to calibrate expectations and judgement
Transparency & disclosure	Required by most institutions, but students unsure how to disclose meaningfully	Needs lightweight, standardised AI-use statements and rationale logs
Data privacy, security & ethics	Strong principles, but limited application in everyday teaching	Requires integration of IP, privacy, brand safety, bias literacy within core modules
Staff capability & resourcing	CPD remains tool-focused, not judgement-focused	CPD must shift to facilitation, auditing, critique, and workflow orchestration

In marketing education, data governance is not an abstract principle but a practical constraint educators navigate daily. When teaching with live briefs or real organisational scenarios, students cannot upload client materials, consumer datasets, or proprietary brand assets into public AI systems. This requires institution-approved tools, clear redaction procedures, and workflows that support compliance without shutting down authentic learning activity. Programme design therefore needs to make privacy-safe AI use teachable, rather than leaving staff to negotiate risk on a case-by-case basis.

To illustrate this variability in practice, Table 12 presents short extracts from institutional policy statements across different global universities. These examples demonstrate that while core principles are shared, interpretation and expectations differ markedly.

Table 12. Illustrative institutional policy language (extracts from global universities)

Theme	University	Policy / Guidance	Example Extract
Academic integrity	University of Birmingham (UK)	Student and PGR guidance	"You cannot use the output of Generative AI... in any assessment, unless explicitly authorised."
Permission & instructor discretion	University of Melbourne (Australia)	GenAI at Melbourne	"Check to ensure that your Subject Coordinator has authorised its use."
Default academic integrity expectations	Stanford University (USA)	Generative AI Policy Guidance	"Use of generative AI shall be treated analogously to assistance from another person."
Limited but permitted rewriting	University of Bristol (UK)	AI in assessments	"Use AI for grammar/spelling and occasional rephrasing, but

Theme	University	Policy / Guidance	Example Extract
			not paragraphs or meaning."
Identity of authorship	King's College London (UK)	Student AI Guidance	"Work submitted must represent a genuine demonstration of your own knowledge and skills."
Disclosure & transparency	University of Sydney (Australia)	Academic Integrity guidance	"You may use AI with acknowledgement where permitted; disclosure is required."
Data privacy	UC Berkeley (USA)	Appropriate Use of Generative AI Tools	"Use these tools to support innovation without placing institutional or personal data at risk."

These examples demonstrate a shared baseline, but also institutional variability that leaves students and staff uncertain about expectations.

The survey data reinforces this pattern. While many marketing educators report that some form of institutional guidance on GenAI exists, it rarely translates into clear, pedagogically actionable direction. As shown in Figure 12, just over half of respondents (53%) report that their institution provides some guidance on AI use in teaching, yet only 12% describe this guidance as comprehensive. At the same time, nearly a third of educators (32%) report that no formal guidance is in place but that such guidance is needed. Together, these findings indicate that most institutions remain in a phase of policy development rather than implementation, producing guidance that is partial, reactive, or unevenly applied. The resulting gap between institutional policy and classroom practice underscores the need for strategic, evidence-informed frameworks that move beyond compliance to support ethical, pedagogically grounded integration of AI in marketing education.

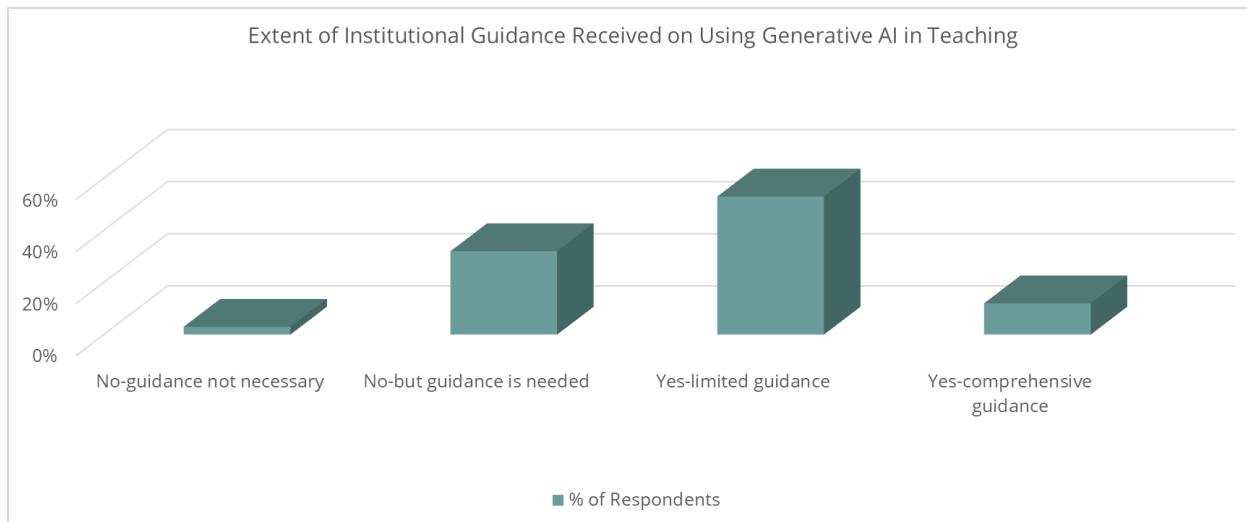


Figure 12. Report of formal institutional guidance on GenAI use in teaching among marketing educators (n = 89).

Even when policy is in place, its usefulness varies. As shown in Figure 13, over half of educators (56%) describe their institution's GenAI policy as only somewhat helpful, while just 12% find it very helpful and nearly one in five (19%) report that no clear policy exists. This distribution suggests that current frameworks are more orienting than operational: they signal acceptable use but offer limited guidance on how to teach, assess, or scaffold AI-enabled learning in practice, thereby placing the burden of interpretation on individual staff.

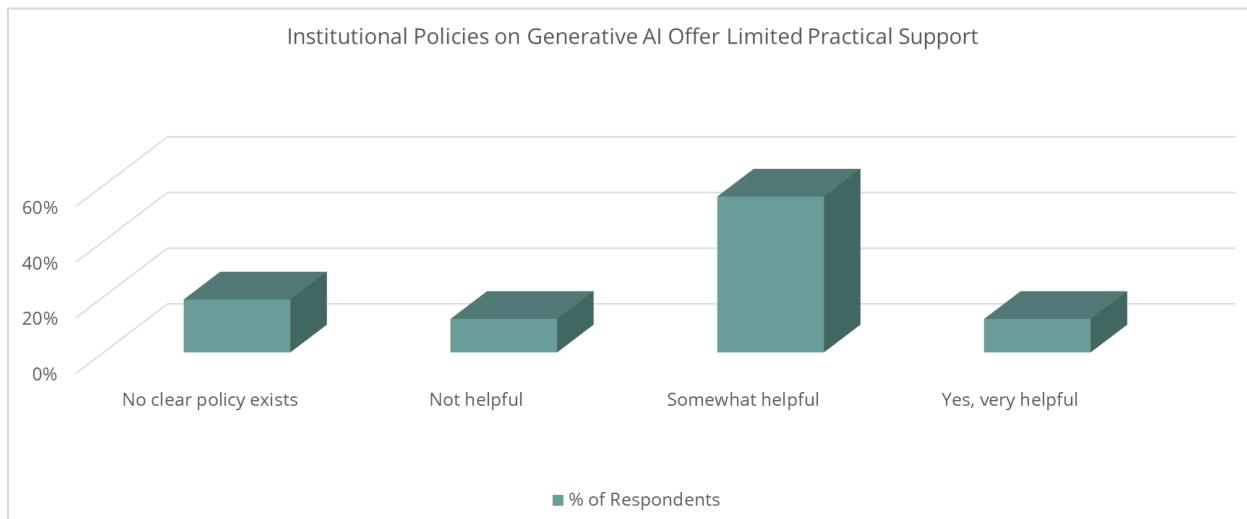


Figure 13. Perceived helpfulness of institutional policy on GenAI (n = 89)

As Figure 12 indicates, the small group who reports that policy is “not necessary” likely reflects two distinct positions rather than uniform rejection:

- those for whom AI feels peripheral to their disciplinary focus, and
- those experiencing ethical hesitation or ‘AI fatigue’.

Distinguishing between technical proficiency and pedagogical literacy is essential here. The goal is not universal adoption, but ensuring staff can evaluate when and why AI should—or should not—be used. This unevenness in guidance and capability creates strategic risk, summarised in Table 13, where fragmentation impacts student equity, assessment fairness, and institutional credibility.

Table 13. Strategic risks if governance does not evolve

Risk	Consequence
Lack of clarity in assessment expectations	Academic integrity disputes rise
Inconsistent staff interpretations	Students receive mixed signals and uneven learning experiences
Paid AI tools widen access gaps	Inequity in performance and employability outcomes
Overreliance on ‘tool tutorials’ in CPD	Staff lack confidence to design AI-enabled learning
Slow adaptation of research and commercial policies	Reputational and compliance exposure

AI access and AI literacy are now structural equity issues, not optional enhancements.

GenAI systems also carry significant energy and resource demands, which means their adoption has environmental implications that marketing graduates will increasingly be expected to recognise and evaluate. Responsible programme design should ensure students can weigh these impacts alongside considerations

of brand safety, equity, and ethical practice when deciding how and when AI should be used.

Staff Capability and Professional Development

Practice is evolving faster than CPD provision, and staff development is falling behind the pace of student experimentation. While educators are already experimenting with AI in classrooms, structured institutional development remains limited. Fewer than one in ten educators report receiving comprehensive training, while nearly three-quarters have either only limited exposure or none at all, despite recognising the need. This trend is shown clearly in Figure 14. Most educators report gaining confidence through informal peer exchange rather than structured training.

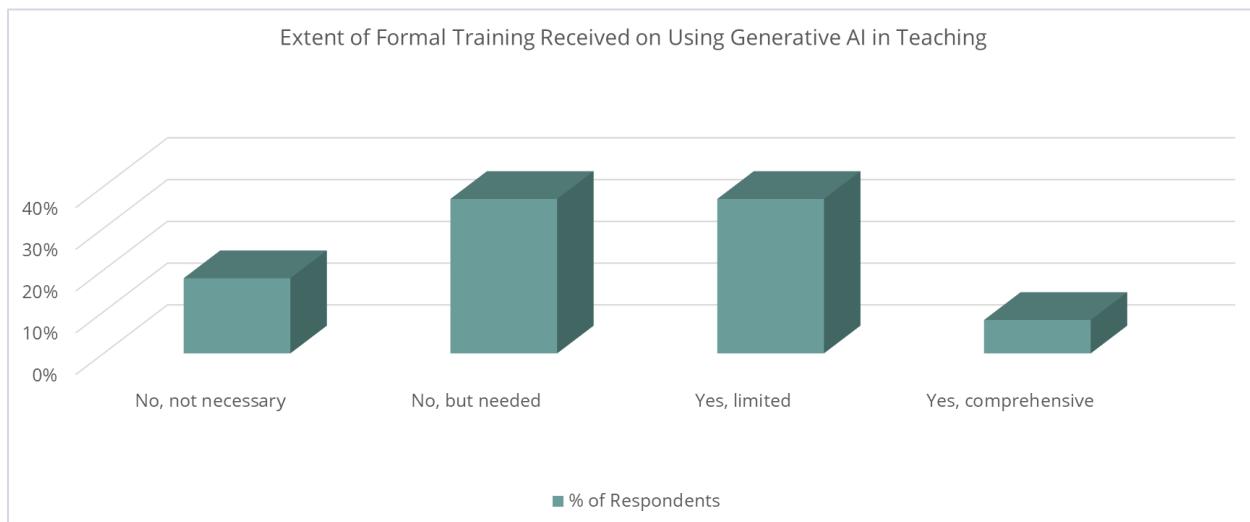


Figure 14. Staff training and institutional support for GenAI in teaching (n = 89)

Educators are currently driving change from the ground up: developing workflows, trialling classroom strategies, and sharing approaches informally. This has allowed rapid innovation and responsiveness to student needs. However, without coordinated development, practice remains uneven. Some students receive structured guidance on how to use and critique AI, while others rely on informal advice that varies by instructor.

Again, the ~18% who report that training is “not necessary” also likely represent two distinct groups:

- those for whom AI is genuinely peripheral to their subject area
- those experiencing hesitation, fatigue, or uncertainty about where AI fits in responsible teaching.

It is therefore important that institutions do not interpret this group as opposed to AI. The core issue is not whether staff can use the tools, but whether they feel confident to make pedagogically sound decisions about when, why, and how AI should be incorporated to preserve judgement, context, and brand responsibility.

Across the sector, pockets of staff expertise are advancing faster than the institutional support structures designed to sustain them. Without coordinated approaches to CPD, shared teaching models, and programme-level guidance, readiness will remain uneven and student experience will continue to depend on who happens to be teaching them. Table 14 outlines the shifts in CPD focus now required for AI-enabled teaching practice.

Table 14. Shifts in CPD focus required for AI-enabled teaching practice

Shift from...	...to	Example focus
Tool tutorials	Designing tasks that make reasoning visible	Prompt → critique → defend workflows
“What can AI do?”	“When, why, and with what risks should AI be used?”	Brand-safety and ethical justification
Individual experimentation	Shared teaching patterns and resources	Studio guides; assessment templates; co-teaching
Ad-hoc experimentation	Evidence-informed, research-aligned practice	Action research cycles; shared evaluation criteria; Scholarship of Teaching and Learning (SoTL) on GenAI

Shift from...	...to	Example focus
AI as an add-on skill	AI as a transversal capability across the curriculum	Curriculum mapping; programme-level AI outcomes; capstone integration
Assuming access	Designing for equitable participation	Approved tools; alternatives; inclusive design for diverse learners

Programmes should consider timetabled studio-style development, shared case libraries, and co-teaching with practitioners, but these are only part of the shift required. The broader transition toward evidence-informed, curriculum-wide capability building demands deliberate institutional investment. Implementing studio-based learning, live critique, oral reasoning checks, and process-visible assessment requires not only time but new forms of pedagogic infrastructure. These approaches depend on protected teaching capacity, workflow-aligned digital tools, and staff development focused on facilitation, comparison, and verification rather than delivery alone. Institutions will need to recognise this work formally—through workload models, shared resource banks, and programme-level coordination—to ensure that emerging practices can scale sustainably and coherently across marketing curricula.

What Institutions Need to Do Now

Universities do not need more statements of principle—they need policies that can be enacted. The priority now is to shift from permissive or prohibitive messaging toward integrated expectations that shape curriculum design, assessment quality, and staff capability.

1. Set enabling and consistent expectations

Consistency must move upstream. Programme-level guidance should make expectations explicit across modules, reducing ambiguity and strengthening academic integrity. This includes:

- Standardised AI-use disclosure statements
- Assessment templates that require visible reasoning

- Shared definitions of originality, authorship, and critical intervention
These measures establish a stable teaching environment in which students can build capability progressively rather than recalibrating expectations each term.

2. Treat AI as academic infrastructure

AI capability now underpins inquiry, communication, and professional practice. Institutions should:

- Ensure access to core AI tools does not depend on personal means
- Provide clear recommendations for at least one institution-supported or freely accessible AI tool to establish a common baseline
- Provide institution-approved, privacy-safe platforms for teaching
- Offer clear redaction and data-handling guidance for live briefs
Equitable access and compliant workflows are prerequisites—not enhancements—for contemporary marketing education.

3. Build staff capability in judgement, not just tools

Staff development must evolve beyond episodic workshops. Effective CPD focuses on:

- Designing tasks and rubrics that surface reasoning
- Facilitating critique, comparison, and verification
- Understanding bias, brand safety, intellectual property, and data governance
Structured peer exchange, interdisciplinary collaboration, and co-teaching models build capacity more reliably than isolated events and support the programme-level coherence students now require.

4. Embed sustainability and data ethics into teaching

As AI becomes embedded in marketing workflows, students need to grapple with:

- Ecological implications of model use

- Representational and bias risks
- Privacy and provenance constraints

Embedding these considerations into briefs and critiques aligns marketing education with sector standards and the ethical obligations graduates will face in practice.

5. Align teaching policy with research and commercial practice

Teaching, research, procurement, and industry collaboration should no longer operate on parallel tracks. A unified governance approach avoids:

- Conflicting expectations across institutional policies
- Reputational and compliance risks during industry engagement
- Ambiguity for faculty when working with external data or partners

Integrated policy frameworks support coherent decision-making and reduce friction across academic and professional domains.

Summary

Direction of travel. Universities are moving quickly to set principles for GenAI use, but practice continues to advance faster than governance. Educators are already redesigning teaching and assessment, yet institutional policy, CPD, and programme-level coherence remain uneven and largely conceptual.

What is required.

- Translate national and sector frameworks (e.g., UK GDS Principles, EU AI Act) into concrete programme-level teaching patterns and assessment models.
- Replace module-by-module discretion with shared expectations for AI-use disclosure, visible reasoning, and consistent definitions of originality and authorship.

- Treat AI access, privacy-safe workflows, and data governance as core academic infrastructure that underpins equity and professional readiness.
- Shift CPD from tool familiarity toward judgement, verification, ethical reasoning, and workflow design, supported by shared resources and coordinated approaches.
- Embed sustainability, IP, privacy, bias literacy, and brand safety into curriculum design, especially where students work with live briefs or organisational scenarios.
- Align teaching policy with research, procurement, and industry collaboration so that guidance, risk standards, and expectations are coherent across the institution.

Strategic implication. Responsible AI use depends on consistent norms, confident staff, and equitable learning conditions—not on whether institutions permit or prohibit specific tools.

Outcome. A transition from reactive policy to strategic readiness, enabling marketing programmes that develop graduates capable of accountable, context-aware, and professionally aligned human–AI collaboration.

AI's Impact on Equity, Inclusion, and Access

The integration of GenAI into marketing education introduces both significant opportunities and meaningful risks for inclusion. AI can expand personalised learning, enable assistive support, and open access to professional practice environments that were once limited to well-resourced institutions. Yet without deliberate action, uneven access to tools, variable digital confidence, and the environmental and social costs of computation can deepen existing inequities across learners and institutions.

In other words, AI does not automatically democratise learning—it can widen or narrow gaps depending on how it is implemented. This section examines where AI can enhance inclusion, where it may undermine it, and what institutional actions are required to ensure equitable participation.

Opportunities: AI as an Enabler of Inclusive, Applied, and Accessible Learning

GenAI can broaden participation when deployed with intentional design. It can support personalised tutoring, provide access to data-rich practice environments, and reduce barriers for multilingual, neurodiverse, and disabled learners. Table 15 summarises key opportunity areas and their implications for inclusive marketing education.

Table 15. Opportunities for enhancing inclusion through GenAI in marketing education

Opportunity	Implication for Inclusive Marketing Education
Personalised learning pathways and adaptive support through AI-enhanced learning systems (Ahmed et al., 2025; Chopra et al., 2024)	Students with diverse linguistic, cognitive, and accessibility needs can receive tailored support without stigma.

Opportunity	Implication for Inclusive Marketing Education
Simulation and data-rich practice environments previously exclusive to elite business schools.	Students gain access to real-world campaign experimentation, segmentation, and insight development.
Assistive technologies (speech-to-text, AI translation, screen-reading enhancement).	Removes barriers to participation for students with disabilities; enhances multilingual and neurodiverse learning.
Low-carbon virtual collaboration spaces and digital campaign modelling (Aggarwal, 2023; Akinsemolu, 2025)	Enables global collaboration and reduces resource-intensive physical mobility.

Done well, AI can help create inclusive classrooms where students learn not only marketing techniques but also how to apply them ethically and responsively in diverse social contexts.

GenAI systems do not generate language neutrally; they are trained on large-scale social texts that carry the cultural values, norms, exclusions, and hierarchies embedded in their source material. As a result, the language these systems produce can amplify dominant market narratives and underrepresent or distort marginalised groups, even when outputs appear fluent or impartial. For marketing education, this matters because students are not only learning to communicate—they are learning to represent audiences, but also to construct meaning, and shape cultural visibility. Educators must make explicit how training data shapes the voices, identities, and assumptions reproduced by AI, and support students in recognising when these representations require correction or contextual reframing. Inclusive practice in AI-enabled learning is not only a matter of access, but of ensuring that students develop the capacity to recognise, critique, and adjust how AI participates in cultural meaning-making.

Risks: How AI Can Widen Inequity

However, these benefits are not guaranteed. If left unaddressed, GenAI can reinforce and magnify existing inequalities. The four most pressing risks include:

1. Unequal access to capable tools

Subscription-based AI systems can create attainment gaps driven by ability to pay—not ability to learn.

2. Digital confidence differences

Variation in comfort with AI tools can influence voice, participation, and career readiness.

3. Environmental and sustainability impacts

The resource intensity of AI raises ethical and regional justice questions.

4. Algorithmic bias and representational harm

Models can reproduce and amplify stereotyped or exclusionary representations of markets and audiences.

Implications for Marketing Education

Addressing inclusion in AI-enabled learning requires more than access to technology—it requires equitable capability development and consistent institutional support. Table 16 outlines corresponding priorities at the learner, educator, and institutional levels.

Table 16. Inclusion Priorities in AI-Enabled Marketing Education and Corresponding Institutional Actions

Level	Inclusion Imperative	Practical Need
Learners	Equitable opportunity to develop AI-enabled capability	Licensed/shared access to tools + scaffolded literacy + reflective justification

Educators	Confidence to facilitate critique, verification, and ethical reasoning	CPD focused on judgement and workflow design—not tools alone
Programmes / Departments	Consistency and equity of AI expectations across the curriculum	Shared AI norms to reduce hidden curriculum effects; sequenced capability development; programme-level exemplars and induction; assessment diversity; regular staff calibration; and early identification of uneven progression with structured recovery support
Institutions	Treat AI access and literacy as academic infrastructure	Standardised access; redaction-safe workflows; sustainability and data ethics integration

Inclusive AI-enabled education is therefore not simply about providing access to tools. It is about ensuring that all learners have capacity, confidence, and agency in using AI responsibly.

Inclusion Priorities for Institutions

To ensure GenAI strengthens rather than fragments equity in marketing education, institutions should:

- Guarantee equitable access to AI tools or design around high-quality open alternatives
- Embed AI literacy and critical evaluation across programmes
- Apply Universal Design for Learning principles (Rose, 2000) to support diverse learners
- Integrate sustainability and data ethics as part of professional brand responsibility
- Monitor differential learner impacts and adapt resourcing accordingly

Inclusive AI-enabled education is something we design, not something we assume. It depends on equitable access, supported learning, and critical attention to ethical impact.

Summary

Direction of travel. AI can expand access and support diverse learners, but without intentional design it risks deepening inequity through paywalled tools, uneven confidence, and unexamined environmental and representational impacts.

What is required. Ensure equitable access to core tools (via institutional licensing or well-designed open alternatives), scaffold AI literacy across programmes, and support educators to facilitate critique, verification, and ethical judgement—not just tool use.

Outcome. Inclusive AI-enabled education develops capability, confidence, and ethical awareness—ensuring all students can participate meaningfully and responsibly in human–AI marketing practice.

Recommendations & Strategic Priorities

GenAI is no longer an optional enhancement in marketing education. It is a structural shift that redefines how marketing is practiced, evaluated, governed, and communicated. Decisions made now will determine whether programmes equip graduates to operate confidently in hybrid human–AI environments or leave them constrained by pre-AI workflows and narrow skill sets. The goal is not faster content production; it is the cultivation of judgement, verification, ethical responsibility, and brand-safe decision-making in contexts where AI is always present.

1. Align curriculum with human-in-the-loop practice

Curricula must recognise that value now comes from directing, critiquing, and contextualising AI outputs—not avoiding them.

Actions:

- Embed AI evaluation, verification, and ethical reasoning inside core modules.
- Teach prompting as strategic communication tied to brand voice, cultural nuance, and audience insight.
- Use studio-style and iterative formats where students refine and justify their interventions.

Why this matters: It reinforces marketing's disciplinary identity: interpretation, strategy, and responsible creativity.

2. Redesign assessment around reasoning and accountability

Assessments must evidence judgement, process, and ethical reflection—not static artefacts.

Actions:

- Require short, consistent AI disclosures.
- Integrate prompt logs and version trails.
- Use oral defence, critique, or pitch formats.

- Adopt AI-inclusive criteria that assess verification and reasoning.

Why this matters: It strengthens integrity, reduces disputes, and aligns assessment with professional expectations.

3. Build staff capability in judgement-led pedagogy

Staff do not need deep technical expertise, but they do need confidence facilitating critique, comparison, and ethical reasoning.

Actions:

- Shift CPD from tool tutorials to judgement-led pedagogy.
- Support interdisciplinary peer exchange and co-teaching.
- Create protected spaces for discussing authorship, identity, and ethical tensions.

Why this matters: Norms are shaped by educators. Staff confidence is the foundation of student capability.

4. Ensure equitable access and inclusive learning conditions

Without coordinated provision, AI risks widening attainment and employability gaps.

Actions:

- Guarantee equitable access to approved generative tools or use high-quality open models.
- Integrate AI literacy into early study skills and induction.
- Apply UDL principles so AI enhances accessibility for diverse learners.

Why this matters: Equity is created through access, capability-building, and inclusive design—not permissive policy.

5. Align institutional policy with educational design

Policy must translate into clear, teachable expectations.

Actions:

- Standardise AI-use norms across programmes.
- Make regulatory frameworks visible in curriculum.
- Align teaching, research, and partnership policies to prevent contradictions.

Why this matters: Consistency protects academic credibility and reduces risk.

6. Strengthen sector and industry collaboration

Modern marketing workflows are hybrid. Partnerships should reflect this reality.

Actions:

- Use synthetic datasets and privacy-safe workflows for live briefs.
- Involve practitioners in critique, defence, and decision-making conversations.
- Refocus internships on evaluation, refinement, and ethical decision-making.

Why this matters: Employability now rests on accountable human–AI collaboration.

Marketing education now stands on the edge of its next disruption, from specialist educational language models to new demands for content moderation, provenance, and trust. The sector needs graduates who can interrogate AI, adapt it responsibly, and defend their choices within real organisational constraints. It also needs a deeper understanding of the AI-assisted student and the AI-assisted educator, whose practices will define tomorrow's standards. The future of marketing education is human-led, AI-informed, and accountability-driven, and institutions that act now will shape the profession that follows.

References

Acar, O. A. (2024). Commentary: Reimagining marketing education in the age of generative AI. *International Journal of Research in Marketing*, 41(3), 489-495. <https://doi.org/10.1016/j.ijresmar.2024.06.004>

Aggarwal, D. (2023). Green Education: A Sustainable Development Initiative with the Power of Artificial Intelligence (AI). *Journal of Image Processing and Intelligent Remote Sensing*, ISSN, 2815-0953. <https://doi.org/10.55529/jipirs.35.39.44>

Ahmed, S., Rahman, M. S., Kaiser, M. S., & Hosen, A. S. (2025). Advancing personalized and inclusive education for students with disability through artificial intelligence: perspectives, challenges, and opportunities. *Digital*, 5(2), 11. <https://doi.org/10.3390/digital5020011>

Akinsemolu, A. A. (2025). Green AI in Education: Can Artificial Intelligence Promote Sustainable Learning? *Journal of Theoretical and Empirical Studies in Education*, 10(2), 596-629. <https://journals.unizik.edu.ng/jtese/article/view/6096>

Al-Fattal, A. (2025). You Do It, AI Does It, You Compare and Reflect: Exploring Reflective Learning With Generative AI in Principles of Marketing. *Journal of Marketing Education*, 02734753251356691. <https://doi.org/10.1177/02734753251356691>

Barnett, R., & Coate, K. (2005). *Engaging the curriculum in Higher Education*. Open University Press. Maidenhead, England.

Beninger, S., Reppel, A., Stanton, J., & Watson, F. (2025). Facilitating generative AI literacy in the face of evolving technology: Interventions in marketing classrooms. *Journal of Marketing Education*, 02734753251316569. <https://doi.org/10.1177/02734753251316569>

Berger, J., Humphreys, A., Ludwig, S., Moe, W. W., Netzer, O., & Schweidel, D. A. (2020). Uniting the tribes: Using text for marketing insight. *Journal of Marketing*, 84(1), 1-25. <https://doi.org/10.1177/0022242919873106>

Biggs, J., & Tang, C. (2011). *Teaching for quality learning at university*. McGraw-hill education. Maidenhead, England.

Boud, D., & Falchikov, N. (2006). Aligning assessment with long - term learning. *Assessment & Evaluation in Higher Education*, 31(4), 399-413. <https://doi.org/10.1080/02602930600679050>

Chopra, A., Patel, H., Rajput, D. S., & Bansal, N. (2024). Empowering inclusive education: Leveraging AI-ML and innovative tech stacks to support students with learning disabilities in higher education. In R. Kaluri, Mahmud, M., Gadekallu, T.R., Rajput, D.S., Lakshmanna, K. (Ed.), *Applied Assistive Technologies and Informatics for Students with Disabilities* (pp. 255-275). Springer. https://doi.org/10.1007/978-981-97-0914-4_15

Corbin, T., Bearman, M., Boud, D., & Dawson, P. (2025). The wicked problem of AI and assessment. *Assessment & Evaluation in Higher Education*, 1-17. <https://doi.org/10.1080/02602938.2025.2553340>

Corbin, T., Dawson, P., & Liu, D. (2025). Talk is cheap: why structural assessment changes are needed for a time of GenAI. *Assessment & Evaluation in Higher Education*, 1-11. <https://doi.org/10.1080/02602938.2025.2503964>

Crittenden, V. L. (2024). What Is the Future of Marketing Education? *Journal of Marketing Education*, 46(1), 3-5. <https://doi.org/10.1177/02734753231220115>

Digital Education Council. (2025). *Global AI Faculty Survey*. <https://www.digitaleducationcouncil.com/form/ai-faculty-survey>.

Ding, M., Dong, S., & Grewal, R. (2024). Generative AI and usage in marketing classroom. *Customer Needs and Solutions*, 11(1), 5. <https://doi.org/10.1007/s40547-024-00145-2>

Dwivedi, Y. K., Kshetri, N., Hughes, L., Slade, E. L., Jeyaraj, A., Kar, A. K., Baabdullah, A. M., Koohang, A., Raghavan, V., & Ahuja, M. (2023). "So what if ChatGPT wrote it?" Multidisciplinary perspectives on opportunities, challenges and implications of generative conversational AI for research, practice and policy. *International Journal of Information Management*, 71, 102642. <https://doi.org/10.1016/j.ijinfomgt.2023.102642>

European Parliament & Council of the European Union. (2024). Regulation (EU) 2024/1689 of the European Parliament and of the Council laying down harmonised rules on artificial intelligence (Artificial Intelligence Act). *Official Journal of the European Union*(L 259), 1-99. <https://eur-lex.europa.eu/eli/reg/2024/1689/oj>

Fore, P. (2025, 8 September 2025). *PwC's U.K. chief admits he's cutting back entry-level jobs and taking a 'watch and wait' approach to see how AI changes work* <https://fortune.com/2025/09/08/pwc-uk-chief-cutting-entry-level-junior-gen-z-jobs-ai-economic-headwinds-like-amazon-salesforce/>

Gonsalves, C. (2024). Generative AI's impact on critical thinking: Revisiting Bloom's taxonomy. *Journal of Marketing Education*, 02734753241305980. <https://doi.org/10.1177/02734753241305980>

Government Digital Service. (2025). *Artificial Intelligence Playbook for the UK Government*. GOV.UK. <https://www.gov.uk/government/publications/ai-playbook-for-the-uk-government/artificial-intelligence-playbook-for-the-uk-government-html>.

Grewal, D., Guha, A., Beccacece Satornino, C., & Becker, M. (2024). The future of marketing and marketing education. *Journal of Marketing Education*, 02734753241269838. <https://doi.org/10.1177/02734753241269838>

Grewal, D., Satornino, C. B., Davenport, T., & Guha, A. (2025). How generative AI Is shaping the future of marketing. *Journal of the Academy of Marketing Science*, 53(3), 702-722. <https://doi.org/10.1007/s11747-024-01064-3>

Guha, A., Grewal, D., & Atlas, S. (2024). Generative AI and Marketing Education: What the Future Holds. *Journal of Marketing Education*, 46(1), 6-17. <https://doi.org/10.1177/02734753231215436>

Hays. (2023). *Employers and staff ready to embrace AI rather than fear it* . <https://www.hays.co.uk/media-centre/press-releases/content/employers-and-staff-ready-to-embrace-ai-rather-than-fear-it>

HEPI. (2025). *HEPI-Kortext Student Generative AI Survey 2025*. <https://www.hepi.ac.uk/2025/02/26/student-generative-ai-survey-2025/>.

Herhausen, D., Ludwig, S., Abedin, E., Haque, N. U., & de Jong, D. (2025). From words to Insights: Text analysis in business research. *Journal of Business Research*, 198, 115491. <https://doi.org/10.1016/j.jbusres.2025.115491>

Holmes, W. (2024). AIED—coming of age? *International Journal of Artificial Intelligence in Education*, 34(1), 1-11. <https://doi.org/10.1007/s40593-023-00352-3>

Huang, M.-H., & Rust, R. T. (2021). A strategic framework for artificial intelligence in marketing. *Journal of the Academy of Marketing Science*, 49, 30-50. <https://doi.org/10.1007/s11747-020-00749-9>

Hutson, J. (2025). Scaffolded Integration: Aligning AI Literacy with Authentic Assessment through a Revised Taxonomy in Education. *FAR Journal of Education and Sociology*, 2(1). <https://digitalcommons.lindenwood.edu/faculty-research-papers/744/>

Jin, Y., Yan, L., Echeverria, V., Gašević, D., & Martinez-Maldonado, R. (2025). Generative AI in higher education: A global perspective of institutional adoption policies and guidelines. *Computers and Education: Artificial Intelligence*, 8, 100348. <https://doi.org/10.1016/j.caeari.2024.100348>

Kasneci, E., Seßler, K., Küchemann, S., Bannert, M., Dementieva, D., Fischer, F., Gasser, U., Groh, G., Günemann, S., & Hüllermeier, E. (2023). ChatGPT for good? On opportunities and challenges of large language models for education. *Learning and Individual Differences*, 103, 102274. <https://doi.org/10.1016/j.lindif.2023.102274>

Khusainova, R., Pantano, E., Kang, E., & Ford, S. (2024). Essential GenAI skills for marketing students. *Times Higher Education*. Retrieved 24 October 2025, from <https://www.timeshighereducation.com/campus/essential-genai-skills-marketing-students>

Kim, H., & Koo, T. K. (2024). The impact of generative AI on syllabus design and learning. *Journal of Marketing Education*, 02734753241299024. <https://doi.org/10.1177/02734753241299024>

Kshetri, N., Dwivedi, Y. K., Davenport, T. H., & Panteli, N. (2024). Generative artificial intelligence in marketing: Applications, opportunities, challenges, and research agenda. *International Journal of Information Management*, 75, 102716. <https://doi.org/10.1016/j.ijinfomgt.2023.102716>

Luo, J. (2024). A critical review of GenAI policies in higher education assessment: a call to reconsider the “originality” of students’ work. *Assessment & Evaluation in Higher Education*, 1-14. <https://doi.org/10.1080/02602938.2024.2309963>

Mehmet, M., Papakosmas, M., Kyriazis, E., & Nikidehaghani, M. (2025). Re-Imagining Marketing Education for Career Readiness in the GenAI Era. *Journal of Marketing Education*, 47(2), 170-190. <https://doi.org/10.1177/02734753251326457>

Microsoft and LinkedIn. (2024). *2024 Work Trend Index Annual Report*. <https://www.microsoft.com/en-us/worklab/work-trend-index/ai-at-work-is-here-now-comes-the-hard-part>

Morgan, H., Russell, L. T. M., & Jocic, M. (2024). Student Perspectives on Generative AI Integration in Advertising Education. *Journal of Advertising Education*, 10980482251376947. <https://doi.org/10.1177/10980482251376947>

Narang, U., Sachdev, V., & Liu, R. (2025). When AI Wears Many Hats: The Role of Generative Artificial Intelligence in Marketing Education. *Journal of Public Policy & Marketing*, 44(3), 473-489. <https://doi.org/10.1177/07439156251328237>

Passig, D. (2003). A taxonomy of future higher thinking skills. *Informatics in Education-An International Journal*, 2(1), 79-92. <https://www.proquest.com/scholarly-journals/taxonomy-future-higher-thinking-skills/docview/746479471/se-2>

Passig, D. (2007). Melioration as a higher thinking skill of future intelligence. *Teachers College Record*, 109(1), 24-50. <https://doi.org/10.1177/016146810710900106>

PwC. (2025, 26 Jun 2025). *AI is linked to a fourfold increase in productivity growth and a 56% wage premium, while jobs continue to grow even in the most easily automated roles, according to the PwC 2025 Global AI Jobs Barometer* <https://www.pwc.com/id/en/media-centre/press-release/2025/english/ai-linked-to-fourfold-productivity-growth-and-56-percent-wage-premium-jobs-grow-despite-automation-pwc-2025-global-ai-jobs-barometer.html>

QAA. (2024). *Navigating the complexities of the artificial intelligence era in higher education*. Quality Compass, 19 February 2024. https://www.qaa.ac.uk/docs/qaa/news/quality-compass-navigating-the-complexities-of-the-artificial-intelligence-era-in-higher-education.pdf?sfvrsn=8179b281_11.

Richter, S., Giroux, M., Piven, I., Sima, H., & Dodd, P. (2025). A constructivist approach to integrating AI in marketing education: Bridging theory and practice. *Journal of Marketing Education*, 47(2), 94-111. <https://doi.org/10.1177/02734753241288876>

Risko, E. F., & Gilbert, S. J. (2016). Cognitive offloading. *Trends in cognitive sciences*, 20(9), 676-688. <http://dx.doi.org/10.1016/j.tics.2016.07.002>

Rose, D. (2000). Universal design for learning. *Journal of Special Education Technology*, 15(4), 47-51. <https://doi.org/10.1177/016264340001500407>

Schlegelmilch, B. B., & Mills, A. J. (2025). Artificial Intelligence and the Future of Marketing Education. *Journal of Marketing Education*, 47(2), 91-93. <https://doi.org/10.1177/02734753251336956>

Stark, D., & Vanden Broeck, P. (2024). Principles of algorithmic management. *Organization Theory*, 5(2), 26317877241257213. <https://doi.org/10.1177/26317877241257213>

Statista. (2024). *Leading benefits of using generative artificial intelligence (GenAI) for social media marketing according to marketers worldwide as of May 2024*.
<https://www.statista.com/statistics/1489683/leading-benefits-generative-ai-social-media-marketing/>.

Torkestani, M. S., Dose, D. B., & Mansouri, T. (2025). Bridging ai skills gaps in marketing education: prompt engineering as a key competency. *Marketing Education Review*, 1-27. <https://doi.org/10.1080/10528008.2025.2501788>

UNESCO. (2024a). *AI competency framework for students*. <https://doi.org/10.54675/JKB9835>

UNESCO. (2024b). *AI competency framework for teachers*. <https://doi.org/10.54675/ZJTE2084>

UNESCO. (2025). *The challenges of AI in higher education and institutional responses: is there room for competency frameworks?*
<https://unesdoc.unesco.org/ark:/48223/pf0000394935.locale=en>.

World Economic Forum. (2025). *The Future of Jobs Report 2025*.
<https://www.weforum.org/publications/the-future-of-jobs-report-2025/>.

Key Terms and Abbreviations

AI – Artificial Intelligence

B2B – Business-to-Business

CPD – Continuing Professional Development

CRM – Customer Relationship Management

ECR – Early Career Researcher

FTC/ASA – Federal Trade Commission / Advertising Standards Authority

GenAI – Generative Artificial Intelligence

HE – Higher Education

HEPI – Higher Education Policy Institute

IP – Intellectual Property

IMC – Integrated Marketing Communications

LLMs – Large Language Models

LTV – Lifetime Value

NPD – New Product Development

PESTLE – Political, Economic, Social, Technological, Legal, Environmental

PGR / PhD – Postgraduate Research / Doctor of Philosophy

PGT – Postgraduate Taught

RAG – Red-Amber-Green (provenance/verification standard)

SEO – Search Engine Optimization

SEM – Search Engine Marketing

SoTL – Scholarship of Teaching and Learning

SWOT – Strengths, Weaknesses, Opportunities, Threats

UDL – Universal Design for Learning

UG – Undergraduate

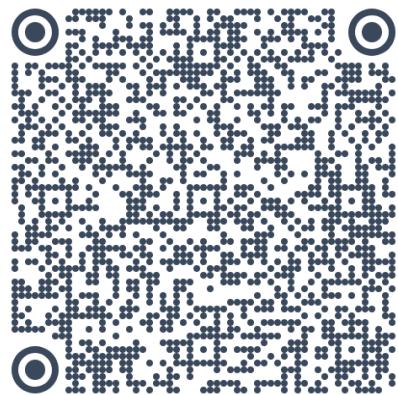
Appendix A — Survey Respondent Profile

Category	Breakdown	Notes
Sample size	n = 89 marketing educators	UK & international HE contexts
Teaching levels represented	UG: 85%; PGT: 78%; Doctoral: 30%; Executive: 28%; Foundation: 10%	Majority teach across multiple levels
Career stage distribution	Doctoral/ECR: 15%; Early-career: 35%; Mid-career: 45%; Senior: 25%	Strong mid- and early-career representation
Gender	Female: 55%; Male: 45%; Other/Prefer not to say: <5%	Balanced gender representation
Geographic distribution	Predominantly UK-based, with representation from Ireland, Europe, and selected international HE institutions	Aligns with the Academy of Marketing network

Overall, the sample reflects a diverse and representative cross-section of marketing educators engaged in teaching across undergraduate, postgraduate, and doctoral levels.

Acknowledgements

We thank the educators and practitioners whose insights informed this report, ensuring the recommendations are grounded in evidence, lived experience and emerging professional expectations.


Recommended citation:

Gonsalves, C., Clancy, M., Khusainova, R., Lee, H.-H., Marshall, K., Percy, S., Quamina, L., Vuković, S., Canhoto, A. I., & Baines, P. (2026). *Marketing education in the age of generative AI: Preparing graduates for human-AI collaboration*. Academy of Marketing Marketing Education SIG, Academy of Marketing. <https://doi.org/10.18742/pub01-237>

© 2026. This work is openly licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Was this useful? Share your feedback here.

